Skip to main content
Log in

Reprogramming somatic gene activity by fusion with pluripotent cells

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

Fertilized eggs and early blastomeres, that have the potential to develop to fetuses when placed into a uterus, are totipotent. Those cells in the embryo, that can give rise to all cell types of an organism, but not to an organism itself, are pluripotent. Embryonic stem (ES), embryonic carcinoma (EC), and embryonic germ (EG) cells are powerful in vitro artifacts derived from different embryonic stages and are pluripotent. Totipotent and pluripotent cells have the potential to greatly benefit biological research and medicine. One powerful feature is that the genetic program of somatic cells can be converted into that of totipotent or pluripotent cells, as shown by nuclear transfer or cell fusion experiments. During reprogramming by cell fusion various features of pluripotent cells are acquired. These include the typical morphology of the respective pluripotent fusion partner, a specific epigenetic state, a specific gene profile, inactivation of tissue-specific genes expressed in the somatic fusion partner, and the developmental as well as differentiation potential of pluripotent cells. In this review, we will discuss what is known about the reprogramming process mediated by cell fusion and the potential use of fusion-induced reprogramming for therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schofield R. Blood Cells 1978;4:7–25.

    PubMed  CAS  Google Scholar 

  2. Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A. Neuron 2000;28:713–726.

    Article  PubMed  CAS  Google Scholar 

  3. Conti L, Pollard SM, Gorba T, et al. PLoS Biol 2005;3:e283.

    Article  PubMed  CAS  Google Scholar 

  4. Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. Science 1999;283:534–537.

    Article  PubMed  CAS  Google Scholar 

  5. Jackson KA, Mi T, Goodell MA. Proc Natl Acad Sci USA 1999;96:14,482–14,486.

    CAS  Google Scholar 

  6. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Science 2000;290:1779–1782.

    Article  PubMed  CAS  Google Scholar 

  7. Shih CC, Weng Y, Mamelak A, LeBon T, Hu MC, Forman SJ. Blood 2001;98:2412–2422.

    Article  PubMed  CAS  Google Scholar 

  8. Okamoto R, Yajima T, Yamazaki M, et al. Nat Med 2002;8:1011–1017.

    Article  PubMed  CAS  Google Scholar 

  9. Sato Y, Araki H, Kato J, et al. Blood 2005;106:756–763.

    Article  PubMed  CAS  Google Scholar 

  10. Clarke DL, Johansson CB, Wilbertz J, et al. Science 2000; 288:1660–1663.

    Article  PubMed  CAS  Google Scholar 

  11. Rietze RL, Valcanis H, Brooker GF, Thomas T, Voss AK, Bartlett PF. Nature 2001;412:736–739.

    Article  PubMed  CAS  Google Scholar 

  12. Toma JG, Akhavan M, Fernandes KJ, et al. Nat Cell Biol 2001;3:778–784.

    Article  PubMed  CAS  Google Scholar 

  13. Lako M, Armstrong L, Cairns PM, Harris S, Hole N, Jahoda CA. J Cell Sci 2002;115:3967–3974.

    Article  PubMed  CAS  Google Scholar 

  14. Herzog EL, Chai L, Krause DS. Blood 2003;102:3483–3493.

    Article  PubMed  CAS  Google Scholar 

  15. Wagers AJ, Weissman IL. Cell 2004;116:639–648.

    Article  PubMed  CAS  Google Scholar 

  16. Tai MH, Chang CC, Kiupel M, Webster JD, Olson LK, Trosko JE. Carcinogenesis 2005;26:495–502.

    Article  PubMed  CAS  Google Scholar 

  17. Kehler J, Tolkunova E, Koschorz B, et al. EMBO Rep 2004; 5:1078–1083.

    Article  PubMed  CAS  Google Scholar 

  18. Nichols J, Zevnik B, Anastassiadis K, et al. Cell 1998;95:379–391.

    Article  PubMed  CAS  Google Scholar 

  19. Niwa H, Miyazaki J, Smith AG. Nat Genet 2000;24:372–376.

    Article  PubMed  CAS  Google Scholar 

  20. Ying QL, Nichols J, Evans EP, Smith AG. Nature 2002;416: 545–548.

    Article  PubMed  CAS  Google Scholar 

  21. Terada N, Hamazaki T, Oka M, et al. Nature 2002;416:542–545.

    Article  PubMed  CAS  Google Scholar 

  22. Wang X, Willenbring H, Akkari Y, et al. Nature 2003;422:897–901.

    Article  PubMed  CAS  Google Scholar 

  23. Vassilopoulos G, Wang PR, Russell DW. Nature 2003;422:901–904.

    Article  PubMed  CAS  Google Scholar 

  24. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al. Nature 2003;425:968–973.

    Article  PubMed  CAS  Google Scholar 

  25. Cao B, Zheng B, Jankowski RJ, et al. Nat Cell Biol 2003;5:640–646.

    Article  PubMed  CAS  Google Scholar 

  26. Jang YY, Collector MI, Baylin SB, Diehl AM, Sharkis SJ. Nat Cell Biol 2004;6:532–539.

    Article  PubMed  CAS  Google Scholar 

  27. Harris H, Watkins JF. Nature 1965;205:640–646.

    Article  PubMed  CAS  Google Scholar 

  28. Baron MH, Maniatis T. Cell 1986;46:591–602.

    Article  PubMed  CAS  Google Scholar 

  29. Blau HM, Blakely BT. Semin Cell Dev Biol 1999;10:267–272.

    Article  PubMed  CAS  Google Scholar 

  30. Blau HM, Chiu CP, Webster C. Cell 1983;32:1171–1180.

    Article  PubMed  CAS  Google Scholar 

  31. Miller RA, Ruddle FH. Cell 1976;9:45–55.

    Article  PubMed  CAS  Google Scholar 

  32. Miller RA, Ruddle FH. Somatic Cell Genet 1977;3:247–261.

    Article  PubMed  CAS  Google Scholar 

  33. Duran C, Talley PJ, Walsh J, Pigott C, Morton IE, Andrews PW. Int J Cancer 2001;93:324–332.

    Article  PubMed  CAS  Google Scholar 

  34. Forejt J, Gregorova S, Dohnal K, Nosek J. Cell Differ 1984; 15:229–234.

    Article  PubMed  CAS  Google Scholar 

  35. McBurney MW. Cell 1977;12:653–662.

    Article  PubMed  CAS  Google Scholar 

  36. McBurney MW, Featherstone MS, Kaplan H. Cell 1978;15:1323–1330.

    Article  PubMed  CAS  Google Scholar 

  37. Do JT, Schöler HR. Stem Cells 2004;22:941–949.

    Article  PubMed  CAS  Google Scholar 

  38. Do JT, Schöler HR. Reprod Fertil Dev 2005;17:143–149.

    Article  PubMed  Google Scholar 

  39. Flasza M, Shering AF, Smith K, Andrews PW, Talley P, Johnson PA. Cloning Stem Cells 2003;5:339–354.

    Article  PubMed  CAS  Google Scholar 

  40. Pells S, Di Domenico AI, Gallagher EJ, McWhir J. Cloning Stem Cells 2002;4:331–338.

    Article  PubMed  CAS  Google Scholar 

  41. Tada M, Tada T, Lefebvre L, Barton SC, Surani MA. EMBO J 1997;16:6510–6520.

    Article  PubMed  CAS  Google Scholar 

  42. Hatano SY, Tada M, Kimura H, et al. Mech Dev 122:67–79.

  43. Kimura H, Tada M, Nakatsuji N, Tada T. Mol Cell Biol 2004;24:5710–5720.

    Article  PubMed  CAS  Google Scholar 

  44. Matveeva NM, Shilov AG, Kaftanovskaya EM, et al. Mol Reprod Dev 1998;50:128–138.

    Article  PubMed  CAS  Google Scholar 

  45. Tada M, Morizane A, Kimura H, et al. Dev Dyn 2003;227:504–510.

    Article  PubMed  CAS  Google Scholar 

  46. Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T. Curr Biol 2001;11:1553–1558.

    Article  PubMed  CAS  Google Scholar 

  47. Cowan CA, Atienza J, Melton DA, Eggan K. Science 2005;309:1369–1373.

    Article  PubMed  CAS  Google Scholar 

  48. Palmieri SL, Peter W, Hess H, Schöler HR. Dev Biol 1994;166: 259–267.

    Article  PubMed  CAS  Google Scholar 

  49. Schöler HR, Ciesiolka T, Gruss P. Cell 1991;66:291–304.

    Article  PubMed  Google Scholar 

  50. Boiani M, Eckardt S, Leu NA, Schöler HR, McLaughlin KJ. EMBO J 2003;22:5304–5312.

    Article  PubMed  CAS  Google Scholar 

  51. Boiani M, Eckardt S, Schöler HR, McLaughlin KJ. Genes Dev 2002;16:1209–1219.

    Article  PubMed  CAS  Google Scholar 

  52. Chiu CP, Blau HM. Cell 1984;37:879–887.

    Article  PubMed  CAS  Google Scholar 

  53. Reich L, Sharir H, Ber R, Wirth T, Bergman Y, Laskov R. Somatic Cell Mol Genet 1996;22:1–20.

    Article  CAS  Google Scholar 

  54. Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ. Nature 2004;427:148–154.

    Article  PubMed  CAS  Google Scholar 

  55. Hubner K, Fuhrmann G, Christenson LK, et al. Science 2003;300:1251–1256.

    Article  PubMed  CAS  Google Scholar 

  56. Toyooka Y, Tsunekawa N, Akasu R, Noce T. Proc Natl Acad Sci USA 2003;100:11,457–11,462.

    Article  CAS  Google Scholar 

  57. Clark AT, Bodnar MS, Fox M, et al. Hum Mol Genet 2004;13:727–739.

    Article  PubMed  CAS  Google Scholar 

  58. Lacham-Kaplan O, Chy H, Trounson A. Stem Cells 2006;24: 266–273.

    Article  PubMed  Google Scholar 

  59. Nayernia K, Nolte J, Michelmann HW, et al. Dev Cell 2006;11: 125–132.

    Article  PubMed  CAS  Google Scholar 

  60. Lachner M, O'Sullivan RJ, Jenuwein T. J Cell Sci 2003;116: 2117–2124.

    Article  PubMed  CAS  Google Scholar 

  61. Tse C, Sera T, Wolffe AP, Hansen JC. Mol Cell Biol 1998;18: 4629–4638.

    PubMed  CAS  Google Scholar 

  62. Krajewski WA, Becker PB. Proc Natl Acad Sci USA 1998;95: 1540–1545.

    Article  PubMed  CAS  Google Scholar 

  63. Eberharter A, Becker PB. EMBO Rep 2002;3:224–229.

    Article  PubMed  CAS  Google Scholar 

  64. Jenuwein T, Allis CD. Science 2001;293:1074–1080.

    Article  PubMed  CAS  Google Scholar 

  65. Zhang Y, Reinberg D. Genes Dev 2001;15:2343–2360.

    Article  PubMed  CAS  Google Scholar 

  66. Norris DP, Patel D, Kay GF, et al. Cell 1994;77:41–51.

    Article  PubMed  CAS  Google Scholar 

  67. McBurney MW, Strutt BJ. Cell 1980;21:357–364.

    Article  PubMed  CAS  Google Scholar 

  68. Stewart CL, Gadi I, Bhatt H. Dev Biol 1994;161:626–628.

    Article  PubMed  CAS  Google Scholar 

  69. Eggan K, Akutsu H, Hochedlinger K, Rideout W, 3rd, Yanagimachi R, Jaenisch R. Science 2000;290:1578–1581.

    Article  PubMed  CAS  Google Scholar 

  70. Takagi N, Yoshida MA, Sugawara O, Sasaki M. Cell 1983;34: 1053–1062.

    Article  PubMed  CAS  Google Scholar 

  71. Ringertz NR, Carlsson SA, Ege T, Bolund L. Proc Natl Acad Sci USA 1971;68:3228–3232.

    Article  PubMed  CAS  Google Scholar 

  72. Wakayama T, Tateno H, Mombaerts P, Yanagimachi R. Nat Genet 2000;24:108–109.

    Article  PubMed  CAS  Google Scholar 

  73. Gao S, Gasparrini B, McGarry M, et al. Biol Reprod 2002;67:928–934.

    Article  PubMed  CAS  Google Scholar 

  74. Strelchenko N, Kukharenko V, Shkumatov A, Verlinsky O, Kuliev A, Verlinsky Y. Reprod Biomed Online 2006;12: 107–111.

    Article  PubMed  Google Scholar 

  75. Taranger CK, Noer A, Sorensen AL, Hakelien AM, Boquest AC, Collas P. Mol Biol Cell 2005;16:5719–5735.

    Article  PubMed  CAS  Google Scholar 

  76. Ding S, Schultz PG. Nat Biotechnol 2004;22:833–840.

    Article  PubMed  CAS  Google Scholar 

  77. Kuehnle I, Goodell MA. BMJ 2002;325:372–376.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans R. Schöler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Do, J.T., Han, D.W. & Schöler, H.R. Reprogramming somatic gene activity by fusion with pluripotent cells. Stem Cell Rev 2, 257–264 (2006). https://doi.org/10.1007/BF02698052

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698052

Index Entries

Navigation