Skip to main content
Log in

Fundamental studies on morphology control for latex systems with application to waterborne coatings: The effect of polymer radical mobility in latex particles during polymerization

  • Published:
Journal of Coatings Technology

Abstract

This work reports on the development of composite latex particle morphology in seeded, semicontinuous emulsion polymerization. Previous work has explained particle morphology development in terms of the ability of second stage polymer radicals to diffuse into, or “penetrate,” the seed particles. This article investigates two separate effects that essentially alter the mobility of the second stage polymer radicals. The first is the initiator type, specifically nonionic versus ionic initiators, and the second is the use of chain transfer agent (CTA). It is shown that ionic initiators make it more likely to obtain core shell morphologies by decreasing the penetration of radicals, but only under a narrow set of conditions. Chain transfer agents, on the other hand, allow for more deviation from core shell morphologies by increasing the penetration of radicals, but significant changes were only observed at the highest concentration of CTA studied. Therefore, both factors are fairly subtle and effects are only observed under specific conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sundberg, D., Cassasa, A., Pantazopoulos, J., Muscato, M., Kronberg, B., and Berg, J., “Morphology Development of Polymeric Microparticles in Aqueous Dispersions. I. Thermodynamic Considerations,”J. Appl. Polym. Sci., 41, 1425 (1990).

    Article  CAS  Google Scholar 

  2. Dimonie, V., Daniels, E., Shaffer, O., and El-Aasser, M., “Control of Particle Morphology,” inEmulsion Polymerization and Emulsion Polymers, Lovell, P.A. and El-Aasser, M.S., (Eds.), John Wiley and Sons Ltd., New York, pp. 293–326, 1997.

    Google Scholar 

  3. Stubbs, J.M., Karlsson, O.K., Sundberg, E.J., Durant, Y.G., Jonsson, J.E., and Sundberg, D.C., “Non-Equilibrium Particle Morphology Development in Seeded Emulsion Polymerization. 1: Penetration of Monomer and Radicals as a Function of Monomer Feed Rate During Second Stage Polymerization,”Colloids Surf., A: Physiochemical and Engineering Aspect, 153, 255–270 (1999).

    Article  CAS  Google Scholar 

  4. Waters, J.,Colloids Surf., A: Physiochemical and Engineering Aspect, 83, 167 (1994).

    Article  CAS  Google Scholar 

  5. Winzor, C.L. and Sundberg, D.C., “Conversion Dependent Morphology Predictions for Composite Emulsion Polymers: 1. Synthetic Latices,”Polymer, 33, 3797–3810 (1992).

    Article  CAS  Google Scholar 

  6. Durant, Y., Sundberg, E., and Sundberg, D., “The Effects of Crosslinking on the Morphology of Structured Latex Particles. 1. Theoretical Considerations,”Macromolecules, 29, 8466 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Durant, Y., Sundberg, E., and Sundberg, D., “The Effects of Crosslinking on the Morphology of Structured Latex Particles. 2. Evidence for Lightly Crosslinked Systems,”Macromolecules, 30, 1028 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Berg, J., Sundberg, D., and Kronberg, B., “Microencapsulation of Emulsified Oil Droplets by In-Situ Polymerization,”Polym. Mater. Sci. Eng., 54, 367 (1986).

    CAS  Google Scholar 

  9. Berg, J., Sundberg, D., and Kronberg, B., “Microencapsulation of Emulsified Oil Droplets by In-Situ Vinyl Polymerization,”J. Microencapsulation, 6, 327 (1989).

    Article  PubMed  CAS  Google Scholar 

  10. Durant, Y. and Sundberg, D., “An Advanced Computer Algorithm for Determining Mophology Development in Latex Particles,”J. Appl. Polym. Sci., 58, 1607–1618 (1995).

    Article  CAS  Google Scholar 

  11. Ivarsson, L., Karlsson, O., and Sundberg, D., “Influence of Glass Transition Temperature on Latex Particle Morphology,”Macromol. Symp., 151, 407–412 (2000).

    Article  CAS  Google Scholar 

  12. Karlsson, L., Karlsson, O.J., and Sundberg, D.C., “Influence of Seed Polymer Tg on Morphology Development,” submitted toJ. Appl. Polym. Sci. (2002).

  13. Gilbert, R.G.,Emulsion Polymerization: A Mechanistic Approach, Academic Press, London, 1995.

    Google Scholar 

  14. Fitch, R.,Polymer Colloids: A Comprehensive Introduction, Academic Press, San Diego, 1997.

    Google Scholar 

  15. Tauer, K. and Deckwer, R., “Polymer End Groups in Persulfate-Initiated Styrene Emulsion Polymerization,”Acta Polym., 49, 411–4116 (1998).

    Article  CAS  Google Scholar 

  16. Verwey, E. and Kruyt, H.,Z. Phys. Chem., A167, 149 (1933).

    CAS  Google Scholar 

  17. Stubbs, J.M., Durant, Y.G., and Sundberg, D.C., “Competitive Adsorption of Sodium Dodecyl Sulfate on Two Polymer Surfaces within Latex Blends,”Langmuir, 15, 3250–3255 (1999).

    Article  CAS  Google Scholar 

  18. Stone-Masui, J. and Stone, W., inPolymer Colloids II, Fitch, R.M. (Ed.), Plenum Press, New York, 331, 1980.

    Google Scholar 

  19. Fitch, R., Su, L., and Tsaur, S., inScientific Methods for the Study of Polymer Colloids and Their Applications, Candau, F. and Ottewil, R.H. (Eds.), Kluwer Academic Publishers, Dordrecht, 373, 1990.

    Google Scholar 

  20. Kukulj, D., and Gilbert, R.G., “Polymerization at High Conversion,” inPolymeric Dispersions, Principles and Applications, Asua, J.M. (Ed.), Kluwer Academic Publishers, Dordrecht, 97–107, 1997.

    Google Scholar 

  21. Mills, M.F., Gilbert, R.G., and Napper, D.H., “Effect of Polymerization Kinetics on Particle Morphology in Heterogeneous Systems,”Macromolecules, 23, 4247–4257 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Chern, C. and Poehlein, G.,J. Polym. Sci., Part A: Poly. Chem., 25, 617 (1987).

    Article  CAS  Google Scholar 

  23. Croxton, C., Mills, M., Gilbert, R., and Napper, D., “Spatial Inhomogeneities in Emulsion Polymerization: Repulsive Wall Calculations,”Macromolecules, 26, 3563–3571 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Maxwell, I.A., Kurja, J., Van Doremaele, G.H., German, A.L. and Morrison, B.R., “Partial Swelling of Latex Particles with Monomers,”Makromol. Chem., 193, 2049–2063 (1992).

    Article  CAS  Google Scholar 

  25. Jönsson, J.-E., Hassander, H., and Törnell, B., “Polymerization Conditions and the Development of a Core-Shell Morpology in PMMA/PS Latex Particles. 1. Influence of Initiator Properties and Mode of Monomer Addition,”Macromolecules, 27, 1932–1937 (1994).

    Article  ADS  Google Scholar 

  26. Ghosh, P., Chadha, S.C., Mukherjee, A.R. and Palit, S.R., “Endgroup Studies in Persulfate-Initiated Vinyl Polymer by Dye Techniques. Part 1. Initiation by Persulfate Alone,”J. Polym. Sci.: Part A, 2, 4433–4440 (1964).

    CAS  Google Scholar 

  27. Ghosh, P., Chadha, S.C. and Palit, S.R., “Endgroup Studies in Persulfate-Initiated Vinyl Polymer by Dye Techniques. Part II. Initiation by Redox Persulfate Systems,”J. Polym. Sci.: Part A, 2, 4441–4451 (1964).

    CAS  Google Scholar 

  28. Waco Chemicals USA, Inc., VA-086 Technical Information, 1998.

  29. Karlsson, O., Stubbs, J., Karlsson, L., and Sundberg, D., “Estimating Diffusion Coefficients for Small Molecules in Polymers and Polymer Solutions,”Polymer, 42, 4915–4923 (2001).

    Article  CAS  Google Scholar 

  30. Tonge, M.P., Stubbs, J.M., Sundberg, D.C., and Gilbert, R.G., “Penetrant Diffusion in Poly(methyl methacrylate) Near Tg: Dependence on Temperature and Polymer Weight Fraction,Polymer, 41, 3659–3670 (2000).

    Article  CAS  Google Scholar 

  31. Vrentas, J. and Vrentas, C., “Solvent Self-Diffusion in Rubbery Polymer-Solvent Systems,”Macromolecules, 27, 4684–4690 (1994).

    Article  ADS  CAS  Google Scholar 

  32. Vrentas, J. and Vrentas, C., “Solvent Self-Diffusion in Glassy Polymer-Solvent Systems,”Macromolecules, 27, 5570–5576 (1994).

    Article  ADS  CAS  Google Scholar 

  33. Vrentas, J., Vrentas, C., and Faridi, N. “Effect of Solvent Size on Solvent Self-Diffusion in Polymer-Solvent Systems,”Macromolecules, 29, 3272–3276 (1996).

    Article  ADS  CAS  Google Scholar 

  34. Duda, J. and Zeilinski, J., “Free Volume Theory,” inDiffusion in Polymers, Neogi, P. (Ed.), Marcel Dekker, New York, 143–171, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Stubbs.

Additional information

Polymer Research Group, Materials Science Dept., G106 Parsons Hall, Durham, NH 03824.

The purpose of the Southern Society Alfred L. Hendry Memorial Award is to encourage undergraduate college and university students to do work in and author papers in some aspects of coatings technology. The award was established in 1986, by the Southern Society for Coatings Technology as sponsors, in memory of an honored Past-President of the Society, Alfred L. Hendry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stubbs, J.M., Sundberg, D.C. Fundamental studies on morphology control for latex systems with application to waterborne coatings: The effect of polymer radical mobility in latex particles during polymerization. Journal of Coatings Technology 75, 59–67 (2003). https://doi.org/10.1007/BF02697722

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02697722

Keywords

Navigation