Skip to main content
Log in

Designing nanostructures for sensor applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanostructured materials have shown great potential in improving the sensitivity and reliability of chemical and biological sensors. The ability to control the geometric shape (size, separation, orientation, alignment, etc.) of nanostructures and to integrate nanostructures from different materials becomes one of the great challenges for sensor fabrication. Glancing angle deposition techniques can fabricate well-aligned three-dimensional nanostructures through computer programming. By rotating the substrate in both polar and azimuthal directions, one can fabricate desired nanostructures, such as nanorod arrays with different shapes, nanospring arrays, and even multilayer nanostructures. This method offers full three-dimensional control of the nanostructure with the additional capability of self-alignment and can be easily integrated into microdevices and optical devices. With the high surface area and high aspect ratio of those nanostructures, different sensors such as enzyme-based biosensors and optical sensors with higher sensitivity have been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Matsui,Proc. IEEE 85, 629 (1997).

    Article  CAS  Google Scholar 

  2. Y. Xia, J.A. Rogers, K.E. Paul, and G.M. Whitesides,Chem. Rev. 99, 1823 (1999).

    Article  CAS  Google Scholar 

  3. Y. Chen and A. Pépin,Electrophoresis 22, 187 (2001).

    Article  CAS  Google Scholar 

  4. H.T. Soh, K.W. Guarini, and C.F. Quate,Scanning Probe Lithography (Boston, MA: Kluwer, 2001).

    Google Scholar 

  5. P. Yang, Y. Wu, and R. Fan,Int. J. Nanosci. 1, 1 (2002).

    Article  CAS  Google Scholar 

  6. G.R. Patzke, F. Krumeich, and R. Nesper,Angew. Chem., Int. Ed. 41, 2446 (2002).

    Article  CAS  Google Scholar 

  7. T.J. Trentler, K.M. Hickman, S.C. Geol, A.M. Viano, P.C. Gibbons, and W.E. Buhro,Science 270, 1791 (1995).

    Article  CAS  Google Scholar 

  8. X.F. Liu, J.H. Zeng, W.X. Zhang, X.C. Yu, Y.T. Qian, J.B. Cao, and W.Q. Zhang,J. Mater. Res. 16, 3361 (2001).

    Article  CAS  Google Scholar 

  9. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang,Nano Lett. 3, 1229 (2003).

    Article  CAS  Google Scholar 

  10. C.M. Lieber,Solid State Commun. 107, 607 (1998).

    Article  CAS  Google Scholar 

  11. Whisker Technology, ed. A.P. Levitt (New York: Wiley-Interscience, 1970).

    Google Scholar 

  12. C.R. Martin,Science 266, 1961 (1994).

    Article  CAS  Google Scholar 

  13. D. Al-Mawlawi, C.Z. Liu, and M. Moskovits,J. Mater. Res. 9, 1014 (1994).

    CAS  Google Scholar 

  14. J.C. Hulteen and C.R. Martin,J. Mater. Chem. 7, 1075 (1997).

    Article  CAS  Google Scholar 

  15. Y.-P. Zhao, D.-X. Ye, G.-C. Wang, and T.-M. Lu,Nano Lett. 2, 351 (2002).

    Article  CAS  Google Scholar 

  16. D.-X. Ye, Y.-P. Zhao, G.-R. Yang, Y.-G. Zhao, G.-C. Wang, and T.-M. Lu,Nanotechnology 13, 615 (2002).

    Article  Google Scholar 

  17. N.O. Young and J. Kowal,Nature 183, 104 (1959).

    Article  CAS  Google Scholar 

  18. Y.-P. Zhao, D.-X. Ye, P.-I. Wang, G.-C. Wang, and T.-M. Lu,Int. J. Nanosci. 1, 87 (2002).

    Article  CAS  Google Scholar 

  19. K. Robbie and M.J. Brett,J. Vac. Sci. Technol., A 15, 1460 (1997).

    Article  CAS  Google Scholar 

  20. K. Robbie, M.J. Brett, and A. Lakhtakia,Nature 384, 616 (1996).

    Article  CAS  Google Scholar 

  21. T. Motohiro and Y. Taga,Appl. Opt. 28, 2466 (1989).

    Article  CAS  Google Scholar 

  22. R. Messier, V.C. Venugopal, and P.D. Sunal,J. Vac. Sci. Technol., A 18, 1538 (2000).

    Article  CAS  Google Scholar 

  23. F. Liu, M.T. Umlor, L. Shen, J. Weston, W. Eads, J.A. Barnard, and G.J. Mankey,J. Appl. Phys. 85, 5486 (1999).

    Article  CAS  Google Scholar 

  24. M. Malac and R.F. Egerton,J. Vac. Sci. Technol., A 19, 158 (2001).

    Article  CAS  Google Scholar 

  25. R.M.A. Azzam,Appl. Phys. Lett. 61, 3118 (1992).

    Article  Google Scholar 

  26. Y. Zhang and J. Zhu,Micron 33, 523 (2002).

    Article  CAS  Google Scholar 

  27. Y.-P. Zhao, D.-X. Ye, G.-C. Wang, and T.-M. Lu,SPIE Proc. 2003, 5219, 59.

    Article  Google Scholar 

  28. B. Nikoobakht, J. Wang, and M.A. El-Sayed,Chem. Phys. Lett. 366, 17 (2002).

    Article  CAS  Google Scholar 

  29. S.P. Mulvaney, L. He, M.J. Natan, and C.D. Keating,J. Raman Spectrosc. 34, 163 (2003).

    Article  CAS  Google Scholar 

  30. M. Green and F.M. Liu,J. Phys. Chem. B 107, 13015 (2003).

    Article  CAS  Google Scholar 

  31. R.M. Stöckle, V. Deckert, C. Fokas, D. Zeisel, and R. Zenobi,Vib. Spectros. 22, 39 (2000).

    Article  Google Scholar 

  32. K. Kneipp, H. Kneipp, R. Manoharan, E.B. Hanlon, I. Itzkan, R. Dasari, and M.S. Feld,Appl. Spectrosc. 52, 1493 (1998).

    Article  CAS  Google Scholar 

  33. S.M. Nie and S.R. Emery,Science 275, 1102 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y.P., Li, S.H., Chaney, S.B. et al. Designing nanostructures for sensor applications. J. Electron. Mater. 35, 846–851 (2006). https://doi.org/10.1007/BF02692538

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02692538

Key words

Navigation