Skip to main content
Log in

Is the sugar always sweet in intestinal inflammation?

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Immune responses are mediated mainly by protein/protein interactions. In addition, protein/carbohydrate (sugar) interactions through specific protein families termed lectin and chi-lectin are also involved in several immune and biological responses under not only the state of health but also inflammatory conditions. Interestingly, recent studies have identified unexpected roles of animal lectins (galectin-1 and galectin-4) and chi-lectin (chitinase 3-like-1) in intestinal inflammation. Galectin-1 contributes to the suppression of intestinal inflammation by the induction of effector T cell apoptosis. In contrast, galectin-4 is involved in the exacerbation of this inflammation by specifically stimulating intestinal CD4+T cells to produce IL-6. CHI3L1 enhances the host/microbial interaction that leads to the exacerbation of intestinal inflammation. In this review, we discuss a novel aspects of lectin/carbohydrate interactions in intestinal inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Podolsky DK: Inflammatory bowel disease. N Engl J Med 2002:347:417–429.

    Article  PubMed  CAS  Google Scholar 

  2. Strober, W, Fuss IJ, Blumberg RS: The immunology of mucosal models of inflammation. Annu Rev Immunol 2002:20:495–549.

    Article  PubMed  CAS  Google Scholar 

  3. Mizoguchi, A, Mizoguchi E, Bhan AK: Immune networks in animal models of inflammatory bowel disease. Inflamm Bowel Dis 2003:9:246–259.

    Article  PubMed  Google Scholar 

  4. Wilk JN, Bilsborough J, Viney JL: The mdra-/-mouse model of spontaneous colitis: a relevant and appropriate model to study inflammatory bowel disease. Immunol Res 2005:31:151–160.

    Article  PubMed  CAS  Google Scholar 

  5. Mizoguchi A, Mizoguchi E, Chiba C, et al: Cytokine imbalance and autoantibody production in TCR-α mutant mice with inflammatory bowel disease. J Exp Med 1996;183:847–856.

    Article  PubMed  CAS  Google Scholar 

  6. Bhan AK, Mizoguchi E, Smith RN, Mizoguchi A: Colitis in transgenic and knockout animals as models of human inflammatory bowel disease. Immunol Rev 1999;169:195–207.

    Article  PubMed  CAS  Google Scholar 

  7. Mizoguchi A, Mizoguchi E, Chiba C, Bhan AK: Appendix lymphoid follicle plays an important role for the development of inflammatory bowel disease in TCR-α mutant mice. J Exp Med 1996;184:707–715.

    Article  PubMed  CAS  Google Scholar 

  8. Mizoguchi A, Mizoguchi E, Smith RN, Preffer FI, Bhan AK: Suppressive role of B cells in chronic colitis of T cell receptor α mutant mice. J Exp Med 1997;186:1749–1756.

    Article  PubMed  CAS  Google Scholar 

  9. Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK: Chronic intestinal inflammatory condition generates IL-10 producing regulatory B cell subset characterized by CD1d upregulation. Immunity 2002;16:219–230

    Article  PubMed  CAS  Google Scholar 

  10. Mizoguchi A, Bhan AK: A case for regulatory B cells. J Immunol 2006;176:705–710.

    PubMed  CAS  Google Scholar 

  11. Targan SR: The search for pathogenic antigens in ulceractive colitis. Gastroenterology 1998:114:1099–1100.

    Article  PubMed  CAS  Google Scholar 

  12. Hokama A, Mizoguchi E, et al: Induced reactivity of intestinal CD4+T cells with an epithelial cell lectin, galectin-4, contributes to exacerbation of intestinal inflammation. Immunity 2004:20:681–693.

    Article  PubMed  CAS  Google Scholar 

  13. Mizoguchi E, Xavier R, Reinecker H-C, et al: Colonic epithelial functional phenotype varies with type and phase of experimental colitis. Gastroenterology 2003;125:148–161.

    Article  PubMed  CAS  Google Scholar 

  14. Mizoguchi E: Chitinase 3-like-1 exacerbates intestinal inflammation by enhancing bacterial adhesion and invasion in colonic epithelial cells. Gastroenterology 2006:130:398–411.

    Article  PubMed  CAS  Google Scholar 

  15. Srikrishna G, Turvskaya O, Shaikh R, et al: Carboxylated glycans mediate colitis through activation of NF-κB. J Immunol 2005:175:5412–5422.

    PubMed  CAS  Google Scholar 

  16. Santucci L, Fiorucci S, Rubinstein N, et al: Galectin-1 suppresses experimental colitis in mice. Gastroenterology 2003:124:1381–1394.

    Article  PubMed  CAS  Google Scholar 

  17. Einerhand AW, Renes IB, Makkink MK, van der Sluis M, Buller HA, Dekker J: Role of mucins in inflammatory bowel disease: important lessions from experimental models. Eur J Gastroenterol Hepatol 2002;14:757–765.

    Article  PubMed  CAS  Google Scholar 

  18. Dell A, Morris HR: Glycoprotein structure determination by mass spectrometry. Science 2001; 291:2351–2356.

    Article  PubMed  CAS  Google Scholar 

  19. Helenius A, Aebi M: Intracellular functions of N-linked glycans. Science 2001:291:2364–2369.

    Article  PubMed  CAS  Google Scholar 

  20. Wells L, Vosseller K, Hart GW: Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 2001:291:2376–2378.

    Article  PubMed  CAS  Google Scholar 

  21. Bertozzi CR, Kiessling LL: Chemical glycobiology. Science 2001:291:2357–2363.

    Article  PubMed  CAS  Google Scholar 

  22. Lowe JB: Glycosylation, immunity, and autoimmunity. Cell 2001:104:809–812.

    Article  PubMed  CAS  Google Scholar 

  23. Baum LG: Developing a taste for sweets. Immunity 2002;16:5–8.

    Article  PubMed  CAS  Google Scholar 

  24. Moody AM, Chui D, Reche PA, Priatel JJ, Marth JD, Reinherz EL: Developmentally regulated glycosylation of the CD8ab coreceptor stalk modulates ligand binding. Cell 2001;107:501–512.

    Article  PubMed  CAS  Google Scholar 

  25. Daniels MA, Devine L, Miller JD, et al: CD8 binding to MHC class I molecules is influenced by T cell maturation and glycosylation. Immunity 2001;15:1051–1061.

    Article  PubMed  CAS  Google Scholar 

  26. Nakamura N, Yamakawa N, Sato T, Tojo H, Tachi C, Furukawa K: Differential gene expression of β-1,4-galactosyltransferase, I, II and V during mouse brain development. J Neurochem 2001:76:29–38.

    Article  PubMed  CAS  Google Scholar 

  27. Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA: Glycosylation and the immune system. Science 2001;291:2370–2376.

    Article  PubMed  CAS  Google Scholar 

  28. Demetriou M, Granovsky M, Quaggin S, Dennis JW: Negative regulation of T-cell activation and autoiummunity by Mgat5 N-glycosylation. Nature 2001;409:733–739.

    Article  PubMed  CAS  Google Scholar 

  29. Malý P, Thall AD, Petryniak B, et al: The (1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 1996:86:643–653.

    Article  PubMed  Google Scholar 

  30. Priatel JJ, Chui D, Hiraoka N, et al: The ST3Gal-I sialyltransferase controls CD8+T lymphocyte homeostasis by modulating O-glycan biosynthesis. Immunity 2000;12:273–283.

    Article  PubMed  CAS  Google Scholar 

  31. Khan AA, Bose C, Yam LS, Soloski MJ, Rupp F: Physiological regulation of the immunological synapse by agrin. Science 2001;292:1681–1686.

    Article  PubMed  CAS  Google Scholar 

  32. Chui D, Sellakumar G, Green RS, et al: Genetic remodeling of protein glycosylation in vivo induces autoimmune disease. Proc Natl Acd Sci USA 2001;98:1142–1147.

    Article  CAS  Google Scholar 

  33. Cobb BA, Kasper DL: Carbohydrates and immunity. Eur J Immunol 2005;35:352–356.

    Article  PubMed  CAS  Google Scholar 

  34. Feinberg H, Mitchell DA, Drickamer K, Weis WI: Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science 2001:294:2163–2166.

    Article  PubMed  CAS  Google Scholar 

  35. Kwon DS, Gregorio G, Bitton N, Hendrickson WA, Littman DR: DS-SIGN-mediated internalization of HIV is required for Trans-enhancement of T cell infection. Immunity 2002, 16:135–144.

    Article  PubMed  CAS  Google Scholar 

  36. Rogers NC, Slack EC, Edwards AD, et al. Syk-dependent cytokine induction by dectin-1 reveals a novel pattern recognition pathway for C type lectin. Immunity 2005;22:507–517.

    Article  PubMed  CAS  Google Scholar 

  37. Takahashi K, Michelow IC, Ezekowitz RA: The mannose-binding lectin: a prototype pattern recognition molecule. Curr Opin Immunol 2006;18:16–23.

    Article  PubMed  CAS  Google Scholar 

  38. Barondes SH, Castronovo V, Cooper DN, et al.: Galectins: a family of animal β-galactosi de-binding lectins. Cell 1994;76:597–598.

    Article  PubMed  CAS  Google Scholar 

  39. Barondes SH, Cooper DNW, Gitt MA, Leffler H: Galectins. J Biol Chem 1994;269:20807–20810.

    PubMed  CAS  Google Scholar 

  40. Rabinovich GA, Baum LG, Tinari N, et al: Galectins and their ligands: amplifiers, silencers or turners of the inflammatory response? Trend Immunol 2002;23: 313–320.

    Article  CAS  Google Scholar 

  41. Perillo NJ, Pace KE, Seihamer JJ, Baum LG: Apoptosis of T cells mediated by galectin-1. Nature 1995;378:736–739.

    Article  PubMed  CAS  Google Scholar 

  42. Perillo NL, Uittenbogaart CH, Nguyen JT, Baum LG: Galectin-1, an endogenous lectin produced by thymic epithelial cells, induces apoptosis of human thymocytes. J Exp Med 1997;185:1851–1858.

    Article  PubMed  CAS  Google Scholar 

  43. Perillo NL, Marcus ME, Baum LG: Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. J. Mol Med 1998;76:402–412.

    Article  PubMed  CAS  Google Scholar 

  44. Chung CD, Patel VP, Moran M, Lewis LA, Miceli MC: Galectin-1 induces partial TCR α-chain phosphorylation and antagonizes processive TCR signal transduction. J Immunol 2000;165:3722–3729.

    PubMed  CAS  Google Scholar 

  45. Swarte VVR, Mebius RE, Joziasse DH, Van den Eijnden DH, Kraal G: Lymphocyte triggering via L-selectin leads to enhance galectin-3-mediated binding to dendritic cells. Eur J Immunol 1998;28:2864–2871.

    Article  PubMed  CAS  Google Scholar 

  46. Cortegano I, Pozo V, Cardaba B et al. Galectin-3 down-regulates IL-5 gene expression on different cell types. J Immunol 1998;161:385–389.

    PubMed  CAS  Google Scholar 

  47. Sato S, Ouellet N, Pelletier I, Simard M, Rancourt A, Bergeron MG: Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. J Immunol 2002;168:1813–1822.

    PubMed  CAS  Google Scholar 

  48. Liu FT: Regulatory roles of galectins in the immune response. Int Arch Allergy Immunol 2005;136:385–400.

    Article  PubMed  CAS  Google Scholar 

  49. Stillman BN, Hsu DK, Pang M, et al: Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J Immunol 2006;176: 778–789.

    PubMed  CAS  Google Scholar 

  50. Sturm A, Lensch M, Andre S, et al: Human galectin-2: novel inducer of T cell apoptosis with distinct profile of caspase activation. J Immunol 2004;173:3825–3837.

    PubMed  CAS  Google Scholar 

  51. Carcamo C, Pardo E, Oyanadel C, et al.: Galectin-8 binds beta 1 integrins and induces polarized spreading highlighted by asymmetric lamellipodia in Jurkat T cells. Exp Cell Res 2006;312:374–386.

    Article  PubMed  CAS  Google Scholar 

  52. Zhu C, Anderson AC, Schubart A, et al: The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 2005;6:1245–1252.

    Article  PubMed  CAS  Google Scholar 

  53. Chiariotti L, Salvatore P, Benvenuto G, Bruni CB: Control of galectin gene expression. Biochimie 1999;81: 381–388.

    Article  PubMed  CAS  Google Scholar 

  54. McHugh RC, Whitters MJ, Piccirillo CA, et al: CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 2002;16:311–323.

    Article  PubMed  CAS  Google Scholar 

  55. Nguyen JT, Evans DP, Galvan M, et al: CD45 modulates galectin-1-induced T cell death: regulation by expression of core 2 O-glycan. J. Immunol 2001;167: 5697–5707.

    PubMed  CAS  Google Scholar 

  56. Fulcher JA, Hashimi S, Levroney EL, et al.: Galectin-1-matured human monocyte-derived dendritic cells have enhanced migration through extracellular matrix. J Immunol 2006;177:216–226.

    PubMed  CAS  Google Scholar 

  57. Toscano MA, Commodaro AG, Ilarregui JM, et al: Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses. J Immunol 2006; 176:6323–6332.

    PubMed  CAS  Google Scholar 

  58. Rechreche H, Mallo GV, Montalto C, Dagorn J-C, Iovanna JL: Cloning and expression of the mRNA of human galectin-4, an S-type lectin down-regulated in colorectal cancer. Eur J Biochem 1997;248:225–230.

    Article  PubMed  CAS  Google Scholar 

  59. Gitt MA, Colnot C, Poirier F, Nani KJ, Barondes SH, Leffler H: Galectin-4 and galectin-6 are two closely related lectins expressed in mouse gastrointestinal tract. J Biol Chem 1998;273:2954–2960.

    Article  PubMed  CAS  Google Scholar 

  60. Hughes RC: Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim Biophy Acta 1999;1473:172–185.

    CAS  Google Scholar 

  61. Ideo H, Seko A, Yamashita K: Galectin-4 binds to sulfated glycosphingolipids and carcinoembryonic antigen in patches on the cell surface of human colon adenocarcinoma cells. J Biol Chem 2005;280:4730–4737.

    Article  PubMed  CAS  Google Scholar 

  62. Blixt O, Head S, Mondala T, et al: Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci USA 2004;101:17033–17038.

    Article  PubMed  CAS  Google Scholar 

  63. Atreya R, Mudter J, Finotto S, et al: Blockade if interleukin 6 trans signaling suppress T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in Crohn disease and experimental colitis in vivo. Nat Med 2000;6:583–588.

    Article  PubMed  CAS  Google Scholar 

  64. Yamamoto M, Yoshizaki K, Kishimoto T, Ito H: IL-6 is required for the development of Th1 cell-mediated murine colitis. J Immunol 2000;164:4878–4882.

    PubMed  CAS  Google Scholar 

  65. Suzuki A, Hanada T, Mitsuyama K, et al: CIS/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. J Exp Med 2001;193:471–481.

    Article  PubMed  CAS  Google Scholar 

  66. Hansen GH, Immerdal L, Thorsen E, et al: Lipid rafts exist as stable cholesterol-independent microdomains in the brush border membrane of enterocytes. J Biol Chem 2001;276:32338–32344.

    Article  PubMed  CAS  Google Scholar 

  67. Braccia A, Villani M, Immerdal L, et al: Microvillar membrane microdomains exist at physiological temperature. J Biol Chem 2003;278:15679–15684.

    Article  PubMed  CAS  Google Scholar 

  68. Ideo H, Seko A, Ohkura T, Matta KL, Yamashita K: High affinity binding of recombinant human galectin-4 to SO(3)(−)→3Galbetal→3GalNAc pyranoside. Glycobiology 2002;12:199–208.

    Article  PubMed  CAS  Google Scholar 

  69. Debono M, Gordee RS: Antibiotics that inhibit fungal cell wall development. Annu Rev Microbiol 1994;48:471–497.

    Article  PubMed  CAS  Google Scholar 

  70. Shhabuddin M, Toyoshima T, Aikawa M, Kaslow DC: Transmission blocking activity of a chitinase inhibitor and activation of malaria paracyte chitinase by mosquito protease. Proc Natl Acad Sci USA 1993;90:4266–4270.

    Article  Google Scholar 

  71. Shibata Y, Foster LA, Bradfield JF, Myrvik QN: Oral administration of chitin downregulates serum IgE levels and lung eosinophilia in the allergic mouse. J Immunol 2000;164:1314–1321.

    PubMed  CAS  Google Scholar 

  72. Suzuki K, Suzuki M, Taiyoji M, Nikaidou N, Watanabe T: Chitin binding protein (CBP21) in the culture supernatant of Serratia marcescens 2170. Biosci Biotechnol Biochem 1998;62:128–135.

    Article  PubMed  CAS  Google Scholar 

  73. Shibata Y, Metzger WJ, Myrvik QN: Chitin-particle-induced cell mediated immunity is inhibited by mannan: mannose receptor-mediated phagocytosis initiates interleukin-12 production. J Immunol 1997;159:2462–2467.

    PubMed  CAS  Google Scholar 

  74. Herrera-Estrella A, Chet I: Chitinases in biological control. EXS 1999;87:171–184.

    PubMed  CAS  Google Scholar 

  75. Dessens JT, Mendoza J, Claudianos C, et al: Knockout of the rodent malaria paracyte chitinase pbCHT1 reduces infectivity to mosquitoes. Infect Immun 2001;69:4041–4047.

    Article  PubMed  CAS  Google Scholar 

  76. Henrissat B, Davies G: Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 1997;7:637–644.

    Article  PubMed  CAS  Google Scholar 

  77. Harbord M, Novelli M, Canas B, et al: Ym1 is neutrophil granule protein that crystallizes in p47phox-deficient mice. J Biol Chem 2002;277:5468–5475.

    Article  PubMed  CAS  Google Scholar 

  78. Chang NA, Hung SI, Hwa KY, et al: A macrophage protein, Ym1, transiently Expressed during inflammation is a nobel mammalian lectin. J Biol Chem 2001;276:17497–17506.

    Article  PubMed  CAS  Google Scholar 

  79. Tjoelker LW, Gosting L, Frey S, et al: Structural and functional definition of the human chitinase chitin-binding domain. J Biol Chem 2000;275:514–520.

    Article  PubMed  CAS  Google Scholar 

  80. Kzhyshkowska J, Mamidi S, Gratchev A, et al: Novel stabilin-1 interacting chitinase-like protein (SI-CLP) is up-regulated in alternatively activated macrophages and secreted via lysosomal pathway. Blood 2006;107:3221–3228.

    Article  PubMed  CAS  Google Scholar 

  81. Fusetti F, Pijning T, Kalk KH, Bos E, Dijkstra BW: Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39. J Biol Chem 2003;278:37753–37760.

    Article  PubMed  CAS  Google Scholar 

  82. Houston DR, Reclie AD, Krupa JC, van Aalten DM: Structure and ligand-induced conformational change of the 39-kDa glycoprotein from human articular chondrocytes. J Biol Chem 2003;278:30206–30212.

    Article  PubMed  CAS  Google Scholar 

  83. Boot RG, Blommaart EFC, Swart E, et al: Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem 2001;276:6770–6778.

    Article  PubMed  CAS  Google Scholar 

  84. Zhu Z, Zheng T, Homer RJ, et al: Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science 2004;304:1678–1682.

    Article  PubMed  CAS  Google Scholar 

  85. Vind I, Johansen JS, Price PA, Munkholm P: Serum YKL-40, a potential new marker of disease activity in patients with inflammatory boel disease. Scand J Gastroenterol 2003;38:599–605.

    Article  PubMed  CAS  Google Scholar 

  86. Johansen JS: Studies on serum YKL-40 as a biomarker in diseases with inflammation, tissue remodeling, fibrosis and cancer. Danish Med Bull 2006;53:172–209.

    PubMed  CAS  Google Scholar 

  87. Rejman JJ, Hurley WL: Isolation and characterization of a novel 39 kilodalton whey protein from bovine mammary secretions collected during the nonlactating period. Biochem Biophys Res Commun 1998;150:329–334.

    Article  Google Scholar 

  88. Shackelton LM, Mann DM, Millis AJT: Identification of a 38-kDa heparin-binding glycoprotein (gp38k) in differentiating vascular smooth muscle cells as a member of a group of proteins associated with tissue remodeling. J Biol Chem 1995;270:13076–13083.

    Article  PubMed  CAS  Google Scholar 

  89. Bigg HF, Wait R, Rowan AD, Cawston TE: The mammalian chitinase-like-lectin, YKL-40, binds specifically to type I collagen and modulates the rate of type I collagen fibril formation. J Biol Chem 2006;28:21082–21095.

    Article  CAS  Google Scholar 

  90. Boudeau J, Glasser AL, Masseret E, Joly B, Darfeuille-Michaud A: Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn's disease. Infect Immun 1999;67:4499–4509.

    PubMed  CAS  Google Scholar 

  91. Darfeuille-Michaud A, Boudeau J, Bulois P, et al: High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in crohn's disease. Gastroenterology 2004;127:412–421.

    Article  PubMed  Google Scholar 

  92. Swidsinski A, Ladhoff A, Pernthaler A, et al: Mucosal flora in inflammatory bowel disease. Gastroenterology 2002;22:44–54.

    Article  Google Scholar 

  93. Vaaje-Kolstad G, Horn SJ, van Aalten DNF, Synstad B, Eijsink VGH: The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem 2005;280:28492–28497.

    Article  PubMed  CAS  Google Scholar 

  94. Malinda KM, Ponce L, Kleinman HK, Shackelton LM, Millis AJT: Gp38k, a protein synthesized by vascular smooth muscle cells, stimulates directional migration of human umbilical vein endothelial cells. Exp Cell Res 1999;250:168–173.

    Article  PubMed  CAS  Google Scholar 

  95. Johansen JS, Jensen HS, Price P: A new biomedical marker for joint injury. Analysis of YKL-40 in serum and synovial fluid. Br J Rheumatol 1993;32:949–955.

    Article  PubMed  CAS  Google Scholar 

  96. Johansen JS, Stoltenberg M, Hansen M, et al: Serum YKL-40 concentrations in patients with rheumatoid arthritis: relation to disease activity. Rheumatology 1999;38:618–626.

    Article  PubMed  CAS  Google Scholar 

  97. Volck B, Johansen JS, Stoltenberg M, et al: Studies on YKL-40 in knee joints of patients with rheumatoid arthritis and osteoarthritis. Involvement of YKL-40 in the joint pathology. Osteoarthritis Cartilage 2001;9:2203–214.

    Article  Google Scholar 

  98. Tsark EC, Wang W, Teng YC, Arkfeld D, Dodge GR, Kovats S: Differential MHC class II-mediated presentation of rheumatoid arthritis autoantigens by human dendritic cells and macrophages. J Immunol 2002;169; 6625–6633.

    PubMed  CAS  Google Scholar 

  99. Ling H, Recklies AD: The chitinase 3-like protein human cartilage glycoprotein 39 inhibits cellular responses to the inflammatory cytokines interleukin-1 and tumor neurosis factor-alpha. Biochem J 2004;380:651–659.

    Article  PubMed  CAS  Google Scholar 

  100. Saito A, Ozaki K, Fujiwara T, Nakamura Y, Tanigami A: Isolation and mapping of a human lung-specific gene. TSA 1902, encoding a novel chitinase family member. Gene 1999;239:325–331.

    Article  PubMed  CAS  Google Scholar 

  101. Renkema GH, Boot RG, Muijsers AO, Donker-Koopman WE, Aerts J: Purification and characterization of human chitotriosidase, a novel member of the chitinase family of proteins. J Biol Chem 1995;270:2198–2202.

    Article  PubMed  CAS  Google Scholar 

  102. Boot RG, Renkema GH, Strijland A, van Zonneveld AJ, Aerts JM: Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages. J Biol Chem 1995;270:26252–26256.

    Article  PubMed  CAS  Google Scholar 

  103. Hakala BE, White C, Recklies AD: Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, as a mammalian mmber of a chitinase protein family. J Biol Chem 1993;268:25803–25810.

    PubMed  CAS  Google Scholar 

  104. Hu, B, Trinh K, Figueira WF, Price PA: Isolation and sequence of a novel human chondrocyte protein related to mammalian members of the chitinase protein family. J Biol Chem 1996;271:19415–19420.

    Article  PubMed  CAS  Google Scholar 

  105. Verhage HG, Fazleabas AT, Donnelly K: The in vitro synthesis and release of proteins by the human oviduct. Endocrinology 1988;122:1639–1645.

    Article  PubMed  CAS  Google Scholar 

  106. Arias EB, Verhage HG, Jaffe RC: Complementary deoxyribonucleic acid cloning and molecular characterization of an estrogen-dependent human oviductal glycoprotein. Biol. Reprod 1994;51:685–694.

    Article  PubMed  CAS  Google Scholar 

  107. Zheng T, Rabach M, Chen NY, et al: Molecular cloning aqnd functional characterization of mouse chitotriosidase. Gene 2005;357:37–46.

    Article  PubMed  CAS  Google Scholar 

  108. Aronson NN, Blanchard CJ, Madura JD: Homology modeling of glycosyl hydrolase family 18 enzymes and proteins. J Chem Inf Comput Sci 1997;37: 999–1005.

    Article  PubMed  CAS  Google Scholar 

  109. Jim HM, Copeland NG, Gilbert DJ, Jenkins NA, Kirkpatrick RB, Rosenberg M. Genetic characterization of the murine Yml gene and identification of a cluster of highly homogeneous genes. Genomics 1998;54:316–322.

    Article  Google Scholar 

  110. Ward JM, Yoon M, Anver MR, et al: Hyalinosis and Ym1/Ym2 gene expression in the stomach and respiratory tract of 129S4/SvJae and wild-type and CYP1A2-null B6, 129 mice. Am J Pathol 2001;158: 323–332.

    PubMed  CAS  Google Scholar 

  111. Webb DC, McKenzie AN, Foster PS: Expression of the Ym2 lectin-binding protein is dependent on in terleukin (IL)-4 and IL-13 signal tranduction: identification of a novel allergy-asociated protein. J Biol Chem 2001;276:41969–41976.

    Article  PubMed  CAS  Google Scholar 

  112. Sendai Y, Komiya H, Suzuki K, et al: Molecular cloning and characterization of a mouse oviduct-specific glycoprotein. Biol Reprod 1995;53:285–294.

    Article  PubMed  CAS  Google Scholar 

  113. Takahashi K, Sendai Y, Matsuda Y, Hoshi H, Hiroi M, Araki Y: Mouse oviduct-specific glycoprotein gene: genomic organization and structure of the 5′-flanking regulatory region. Biol Reprod 2000;62:217–226.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Mizoguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizoguchi, E., Mizoguchi, A. Is the sugar always sweet in intestinal inflammation?. Immunol Res 37, 47–60 (2007). https://doi.org/10.1007/BF02686089

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02686089

Key Words

Navigation