Skip to main content
Log in

Relationship between synovial fluid and plasma manganese, arginase, and nitric oxide in patients with rheumatoid arthritis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) participates in the pathogenesis of inflammatory reactions in many autoimmune diseases such as rheumatoid arthritis (RA). There is a reciprocal pathway between arginase and nitric oxide synthese (NOS) for NO production, and Mn is required for arginase activity and stability. To investigate whether NO production related with the arginine-nitric oxide pathway in patients with RA, we measured synovial fluid and plasma nitrite (NOx) levels, arginase activities, and its cofactor manganese (Mn) concentrations in 21 RA patients and 13 healthy control subjects. Plasma albumin levels were measured as an index of nutritional status. NOx levels were determined after the reduction of nitrates to nitrites using the Griess reaction. Whereas, synovial fluid arginase activities and Mn levels were found to be significantly lower (p<0.001, p<0.001, respectively), plasma arginase activities and Mn levels were similar in patients with RA when compared to the control subjects. Plasma and synovial fluid NO levels were similar in patients with RA and in healthy subjects (p>0.05, p>0.05, respectively). There were significantly positive correlations between synovial fluid and plasma arginase activities vs Mn content (r=0.543, p=0.011; r=0.516, p=0.017, respectively) and significantly negative correlations between synovial fluid and plasma NO levels vs arginase activities (r=−0.497, p=0.022; r=−0.508, p=0.019 respectively) in the patients group. Our results indicate that the lower concentration of synovial fluid Mn could cause lower arginase activity and this could also upregulate NO production by increasing L-arginine content in patients with RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Recklies, A. R. Poole, S. Banerjee, et al., Pathophysiologic aspects of inflammation in diarthroidal joints, in Orthopaedic Basic Science, 2nd ed., J. A. Buckwalter, T. A. Einhorn, and S. R. Simon, eds., AAOS, Rosemont, IL, pp. 489–530 (2000).

    Google Scholar 

  2. D. O. Stichtenoth and J. C. Frolich, Nitric oxide and inflammatory joint diseases, Br. J. Rheumatol. 37, 246–257 (1998).

    Article  PubMed  CAS  Google Scholar 

  3. A. J. Farrell, D. R. Blake, and R. M. J. Palmar, Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann. Rheum. Dis. 51, 1219–1222 (1992).

    PubMed  CAS  Google Scholar 

  4. H. Kolb and V. Kolb-Bachofen, Nitric oxide: a pathogenetic factor in autoimmunity, Immunol. Today 13, 157–159 (1992).

    Article  PubMed  CAS  Google Scholar 

  5. M. Stefanovic-Racic, J. Stadler, and C. H. Evans, Nitric oxide and arthritis, Arthritis Rheum. 36, 1036–1044 (1993).

    Article  PubMed  CAS  Google Scholar 

  6. O. Onur, A. S. Akinci, F. Akbiyik, and I. Unsal, Elevated levels of nitrate in rheumatoid arthritis, Rheumatol. Int. 20, 154–158 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. Y. Ersoy, E. Ozerol, O. Baysal, et al., Serum nitrate and nitrite levels in patients with rheumatoid arthritis, ankylosing spondylitis, and osteoarthritis, Ann. Rheum. Dis. 61, 76–78 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. Choi JW, Nitric oxide production is increased in patients with rheumatoid arthritis but does not correlate with laboratory parameters of disease activity. Clin. Chim. Acta 336, 83–87 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. Y. Ueki, S. Miyake, Y. Taminaga, and K. Eguchi, Increased nitric oxide levels in patients with rheumatoid arthritis, J. Rheumatol. 23, 230–236 (1996).

    PubMed  CAS  Google Scholar 

  10. S. Moncada and A. Higgs, The l-arginine nitric oxide pathway, N. Engl. J. Med. 30, 2002–2012 (1993).

    Article  Google Scholar 

  11. C. H. Evans, M. Stefanovic-Racic, and J. Lancaster, Nitric oxide and its role in orthopaedic disease, Clin. Orthop 312, 275–294 (1995).

    PubMed  Google Scholar 

  12. J. Stadler, M. Stefanovic-Racic, and T. R. Billiar, Articular chondrocytes synthesize nitric oxide in response to cytokines and lipopolisaccharide, J. Immunol. 147, 3915–3920 (1991).

    PubMed  CAS  Google Scholar 

  13. G. A. Murrell, M. M. Doland, D. Jang, C. Szabo, R. F. Warren, and J. A. Hannafin, Nitric oxide: an important articular free radical. J. Bone Joint Surg. Am. 78, 265–274 (1996).

    PubMed  CAS  Google Scholar 

  14. J. Cedergren, T. Forslund, T. Sundqvist, and T. Skogh, Inducible nitric oxide synthase is expressed in synovial fluid granulocytes, Clin. Exp. Immunol. 130, 150–155 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. J. L. Boucher, C. Moali, and J. P. Tenu, Nitric oxide biosynthesis, nitric oxide synthase inhibitors an arginase competition for l-arginine utilization. Cell. Mol. Life Sci. 55, 1015–1028 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. J. E. Albina, C. D. Mills, W. L. Henry, and M. D. Caldwell, Temporal expression of different pathways of l-arginine metabolism in healing wounds, J. Immunol. 144, 3877–3880 (1990).

    PubMed  CAS  Google Scholar 

  17. I. Durak, H. S. Ozturk, S. Elgun, M. Y. B. Cimen, and S. Yalcin, Erythrocyte nitric oxide metabolism in patients with chronic renal failure. Clin. Nephrol. 55, 460–464 (2001).

    PubMed  CAS  Google Scholar 

  18. A. Jahnsen, S. Lewis, V. Cattell, and H. T. Cook, Arginase is major pathway of l-arginine metabolism in nephritic glomeruli. Kidney Int. 42, 1107–1112 (1992).

    Article  Google Scholar 

  19. I. Corraliza and S. Moncada, Increased expression of arginase II in patients with different forms of arthritis. Implications of the regulation of nitric oxide. J. Rheumatol. 29, 2261–2265 (2002).

    PubMed  CAS  Google Scholar 

  20. A. Brock, S. A. Chapman, E. A. Ulman, and G. Wu, Dietary manganese deficiency decreases rat hepatic arginase activity. J. Nutr. 124, 340–344 (1994).

    PubMed  CAS  Google Scholar 

  21. A. M. Diez, M. L. Campo, and G. Soler, Trypsin digestion of arginase: evidence for a stable confirmation manganese directed, Int. J. Biochem. 24, 1925–1932 (1992).

    Article  PubMed  CAS  Google Scholar 

  22. F. C. Arnett, S. M. Edworthy, D. A. Bloch, et al., The American Rheumatisim Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31, 315–324 (1988).

    Article  PubMed  CAS  Google Scholar 

  23. D. O. Stichtenoth, J. Fauler, H. Zeidler, and J. C. Frolich, Urinary nitrate excretion is increased in patients with rheumatoid arthritis and reduced by prednisolone, Ann. Rheum. Dis. 54, 820–824 (1995)

    PubMed  CAS  Google Scholar 

  24. E. J. Van Kampen and W. G. Zijlstra, Haemoglobinometry: from estimation to reference method, J. Clin. Chem. Clin. Biochem. 19, 517–519 (1981).

    PubMed  Google Scholar 

  25. W. R. Tracey, J. Tse, and G. Carter, Lipopolysaccharide-induced changes in plasma nitrite and nitrate concentrations in rats and mice: pharmacological evaluation of nitric oxide synthase inhibitors. J. Pharmacol. Exp. Ther. 272, 1011–1015 (1995).

    PubMed  CAS  Google Scholar 

  26. J. W. Geyer and D. Dabich, Rapid method for determination of arginase activity in tissue homogenates, Anal. Biochem. 39, 412–417 (1971).

    Article  PubMed  CAS  Google Scholar 

  27. L. M. Silverman and R. H. Christenson, Amino acid and proteins, In Textbook of Clinical Chemistry, C. A. Burtis and E. R. Ashwood, eds., Saunders, Philadelphia, pp. 695–697 (2000).

    Google Scholar 

  28. D. Milde, O. Novak, V. Stuka, K. Vyslouil, and J. Machaek, Plasma levels of selenium, manganese, copper, and iron in colorectal cancer patients. Biol. Trace Element Res. 79, 107–114 (2001).

    Article  CAS  Google Scholar 

  29. M. Yazar, S. Sarban, A. Kocyigit, and U. E. Isikan, Synovial fluid and plasma selenium, copper, zinc, and iron concentrations in patients with rheumatoid arthritis and osteoarthritis. Biol. Trace Element Res. 106, 123–132 (2005).

    Article  CAS  Google Scholar 

  30. S. Sarban, A. Kocyigit, M. Yazar, and U. E. Isikan, Plasma total antioxidant capacity, lipid peroxidation, and erythrocyte antioxidant enzyme activities in patients with rheumatoid arthritis and osteoarthritis, Clin. Biochem. 38, 981–986 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. D. Tsikas, F. M. Gutzki, S. Rossa, et al., Measurement of nitrite and nitrate in biological fluids by gas chromatography-mass spectrometry and by the Griess assay: problems with the Griess assay-solutions by gas chromatography-mass spectrometry. Anal. Biochem. 244, 208–220 (1997).

    Article  PubMed  CAS  Google Scholar 

  32. H. Sakurai, H. Kohsaka, M. F. Liu, et al., Nitric oxide production and inducible nitric oxide synthase expression in inflammatory arthritides. J. Clin. Invest. 96, 2357–2363 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarban, S., Isikan, U.E., Kocabey, Y. et al. Relationship between synovial fluid and plasma manganese, arginase, and nitric oxide in patients with rheumatoid arthritis. Biol Trace Elem Res 115, 97–106 (2007). https://doi.org/10.1007/BF02686022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02686022

Index Entries

Navigation