Skip to main content
Log in

Toxic and trace metal concentrations in liver and kidney of dogs

Influence of diet, sex, age, and pathological lesions

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of this study was to provide data on the main toxic and trace metals in the liver and kidney of domestic dogs in Galicia, NW Spain and to evaluate the influence of diet, sex, age, and pathological lesions on metal accumulation. Samples of the liver and kidney from 77 male and female dogs, aged between 6 mo and 18 yr, were collected during ordinary necropsy. Samples were acid-digested and metal concentrations determined by inductively coupled plasma (ICP)-mass spectrometry and ICP-atomic emission spectrometry. Mean toxic metal concentrations (geometric means for liver and kidney respectively) were 11.5 and 15.8 μg/kg wet weight for As, 56.3 and 166 μg/kg for Cd, 32.7 and 51.9 μg/kg for Hg, and 60.1 and 23.6 μg/kg for Pb. For the trace metals, these concentrations were respectively 16.3 and 21.0 μg/kg for Co, 57.6 and 43.9 μg/kg for Cr, 42.1 and 5.95 mg/kg for Cu, 394 mg/kg and 95.7 mg/kg for Fe, 2.39 and 0.956 mg/kg for Mn, 0.522 and 0.357 mg/kg for Mo, 23.8 and 26.8 μg/kg for Ni, 0.686 and 1.39 mg/kg for Se, and 46.7 and 26.0 mg/kg for Zn. Cd concentrations in the kidney significantly increased with age, and Co concentrations in the liver and kidney significantly decreased with age. Hepatic Pb concentrations were significantly higher in growing (<1 yr) and old (>10 yr) dogs. Animals with pathological lesions showed significantly higher Co and lower Mn and Zn concentrations in liver than animals with-out macroscopic abnormalities. Dogs that received commercial diets in general showed low variability in hepatic mineral status compared to animals that receive homemade feeds or a mixture of commercial and homemade feeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Friberg, G. F. Nordberg, and V. B. Vouk, Handbook on the Toxicology of Metals, Elsevier, Amsterdam (1979).

    Google Scholar 

  2. J. Bires, J. Dianovsky, P. Bartko, and Z. Juhasova, Effects on enzymes and the genetic apparatus of sheep after administration of samples from industrial emissions, BioMetals 8, 53–58 (1995).

    Article  PubMed  CAS  Google Scholar 

  3. E. J. Underwood and N. F. Suttle, The Mineral Nutrition of Livestock, 3rd ed., CAB International, Wallingford, UK (1999).

    Google Scholar 

  4. I. Bremner, Nutritional and physiological significance of metallothionein, Methods Enzymol. 205, 25–35 (1991).

    Article  PubMed  CAS  Google Scholar 

  5. I. Bremner, Manifestations of copper excess, Am. J. Clin. Nutr. 67, 1069S-1073S (1998).

    PubMed  CAS  Google Scholar 

  6. P. C. Schultheiss, C. L. Bedwell, D. W. Hamar, and M. J. Fettman, Canine liver iron, copper, and zinc concentrations and association with histologic lesions, J. Vet. Diagn. Invest. 14, 396–402 (2002).

    PubMed  Google Scholar 

  7. A. Piperno, A. Vergani, I. Malosio, et al., Hepatic iron overload in patients with chronic viral hepatite: role of HFE gene mutations, Hepatology 28, 1105–1109 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. S. E. Bassett, A. M. Bisceglie, B. R. Bacon, et al., Effects of iron loading on pathogenicity in hepatite C virus-infected chimpanzees. Hepatology, 29, 1884–1892 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. N. Ganne-Carrie, C. Christidis, C. Chastang, et al., Liver iron is predictive of death on alcoholic cirrhosis: a multivariate study of 229 consecutive patients with alcoholic and/or hepatite C virus cirrhosis: a prospective follow up study, Gut 46, 277–282 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. D. S. Rolfe and D. C. Twedt, Copper-associated hepatophaties in dogs, Vet. Clin. N. Am.: Small. Anim. Pract. 25, 399–417 (1995).

    CAS  Google Scholar 

  11. J. W. Halliday and J. Searle, Hepatic iron deposition in human disease and animal models, BioMetals 2, 205–209 (1996).

    Google Scholar 

  12. S. Haywood, I. C. Fuentealba, and S. J. Kemp, Copper toxicosis in Bedlington terriers, Vet. Rec. 25, 383–384 (2000).

    Google Scholar 

  13. R. A. Goyer, Factors influencing metal toxicity in Metal Toxicology, R. A. Goyer, C. D. Klaassen, and M. P. Waalkes, eds., Academic, San Diego, pp. 31–45 (1995).

    Google Scholar 

  14. G. J. Ryan, N. S. Wanko, A. R. Redman, and C. B. Cook, Chronium as adjunctive treatment for type 2 diabetes, Ann. Pharmacother. 37, 876–885 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. G. Perry, M. A. Taddeo, R. B. Petersen, et al., Adventiously-bound redox active iron and copper are at the center of oxidative damage in Alzheimer disease, BioMetals 16, 77–81 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. R. Puls, Mineral Levels in Animal Health, Sherpa International, Clearbrook, Canada (1994).

    Google Scholar 

  17. M. Gamberg and B. M. Braune, Contaminant residue levels in arctic wolves (Canis lupus) from the Yukon Territory, Canada, Sci. Total Environ. 244, 329–338 (1999).

    Article  Google Scholar 

  18. K. G. Charlton, D. W. Hird, and L. K. Spiegel, Trace metal concentrations in San Joaquin kit foxes from the southern San Joaquin Valley of California, Calif. Fish Game 87, 45–50 (2001).

    Google Scholar 

  19. K. Adamama-Moraitou, T. Rallis, A. Papasteriadis, N. Roubies, and H. Kaldrimidou, Iron, zinc and copper concentration in serum, various organs, and hair of dogs with experimentally induced exocrine pancreatic insufficiency, Dig. Dis. Sci. 46, 1444–1457 (2001).

    Article  PubMed  CAS  Google Scholar 

  20. M. López-Alonso, J. L. Benedito, M. Miranda, C. Castillo, J. Hernández, and R. F. Shore, Arsenic, cadmium, lead, copper and zinc in cattle from Galicia, NW Spain, Sci. Total Environ. 246, 237–248 (2000).

    Article  PubMed  Google Scholar 

  21. M. López-Alonso, F. Prieto Montaña, M. Miranda, C. Castillo, J. Hernández, and J. L. Benedito, Internations between toxic (As, Cd, Hg and Pb) and nutritional essential (Ca, Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, Zn) elements in the tissues of cattle from NW Spain, BioMetals 17, 389–397 (2004).

    Article  PubMed  Google Scholar 

  22. C. Fuentealba, S. Guest, S. Haywood, and B. Horney, Chronic hepatitis: a retrospective study in 34 dogs, Can. Vet. J. 38, 365–373 (1997).

    PubMed  CAS  Google Scholar 

  23. D. J. Meyer and J. W. Harvey, Hematologic changes associated with serum and hepatic iron alterations in dogs with congenital portosystemic vascular anomalies, J. Vet. Intern. Med. 8, 55–56 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. R. Dudley, L. Gammal, and C. Klassen, Cadmium-induced hepatic and renal injury in chronically exposed rats: Likely role of hepatic cadmium-metallothionein in nephrotoxicity, Toxicol. Appl. Pharm. 77, 414–426 (1985).

    Article  CAS  Google Scholar 

  25. K. Kostial, Cadmium, in Trace Elements in Human and Animal Nutrition, W. Mertz, ed., Academic, San Diego, pp. 319–345 (1987).

    Google Scholar 

  26. WHO, Inorganic Lead, Environmental Health Criteria, 165, WHO Geneva (1995).

    Google Scholar 

  27. J. Quarterman, Lead, in Trace Elements in Human and Animal Nutrition, W. Mertz, ed., Academic, San Diego, pp. 298–317 (1986).

    Google Scholar 

  28. M. B. Rabinowitz, J. D. Wang, and W. T. Soong, Dentine lead and children intelligence in Taiwan, Arch. Environ. Health 46, 351–360 (1991).

    Article  PubMed  CAS  Google Scholar 

  29. E. K. Silbergeld, Lead in bone: implications for toxicology during pregnancy and lactation. Environ. Health Perspect. 91, 63–70 (1991).

    Article  PubMed  CAS  Google Scholar 

  30. M. Gamberg, M. Palmer, and P. Roach, Temporal and geographic trends in trace element concentrations in moose from Yukon, Canada, Sci. Total Environ. 351, 530–538 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. M. Webb, The metallothioneins, in The Chemistry, Biochemistry and Biology of Cadmium. Topics in Environmental Health, M. Webb, ed., Elsevier, Amsterdam, pp. 195–266 (1979).

    Google Scholar 

  32. R. L. Kincaid, L. E. Lefebvre, J. D. Cronrath, M. T. Socha, and A. B. Johnson, Effect of dietary cobalt supplementation on cobalt metabolism and performance of dairy cattle, J. Dairy Sci. 86, 1405–1414 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Alonso, M., Miranda, M., García-Partida, P. et al. Toxic and trace metal concentrations in liver and kidney of dogs. Biol Trace Elem Res 116, 185–202 (2007). https://doi.org/10.1007/BF02685930

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02685930

Index Entries

Navigation