Skip to main content
Log in

Arsenic metabolism in multiple myeloma and astrocytoma cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Arsenic trioxide (As2O3, Trisenox®) is used to treat patients with refractory or relapsed acute promyelocytic leukemia (APL). Its ability to induce apoptosis in various malignant cell lines has made it a potential treatment agent for other malignancies and many clinical trials are currently in progress to evaluate its clinical usefulness for multiple myeloma and glioblastoma cancer. In the present study, we investigated the metabolism of As2O3 regarding its cellular biotransformation and interaction with metallothionein (MT) as a possible protective responses of cells to arsenic-induced cytotoxicity.

The study was performed on two types of cell treated with As2O3: (1) human astrocytoma (glioblastoma) cell line U87MG treated with 0.6 μM arsenic for 0, 3, 12, 24, and 48 h or 12 μM arsenic for 3, 6, 12, 24, and 48 h and (2) bone marrow cells (BM) from two patients with multiple myeloma (MM) treated with 7 μM arsenic for 0, 43, and 67 h. Cotreatment with vitamin C (1 mg/mL) was tested in longer exposure of MM BM cells.

Traces of methylation products (mainly monomethylarsenic acid) were detected in cell lysates of both cell types and in pellets of U87 MG cells, although we found problems with column-sample interactions in cases where methanol pretreatment of the sample was not used. Pentavalent inorganic arsenic (AsV) was identified in both cell types, and up to 80% of total As in MM bone marrow cell lysates was present as AsV. Such an occurrence (generation) of pentavalent arsenic after As2O3 treatment demonstrates the presence of biological oxidation of trivalent arsenic, which could represent an additional protective mechanism of the cell. Vitamin C decreased As cell content and increased the percentage of pentavalent inorganic arsenic (in the growth medium and cells).

The presence of metallothionein (MT) and its response to arsenic treatment was checked in all U87 MG cells, in the control, and in one exposed sample of MM BM cells. During 48 h exposure to 0.6 or 12 μM arsenic MTI/II levels increased in U87 MG cells, but with variable Zn levels, increased Cu levels, and As binding observed in traces only. Involvement of the MT-III isoform was negligible. In contrast, 43 h exposure to 7 μM arsenic did not increase MT content in multiple myeloma cells, and the levels even decreased with respect to the control.

To evaluate the importance of the observed processes, MTs in U87 and AsIII−AsV conversion in MM BM cells, which could represent a resistance response of cancer cells treated by As2O3, longer-term observation with different arsenic concentrations should be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cell Therapeutics, Trisenox, 2002, Cell Therapeutics Inc, London (2002).

    Google Scholar 

  2. Y. Jing, J. Dai, R. M. E. Chalmers-Redman, W. G. Tatton, and S. Waxman Arsenic trioxide selectively induces acute promyelocytic leukaemia cell apoptosis via a hydrogen peroxide-dependent pathway, Blood 94, 2102–2111 (1999).

    PubMed  CAS  Google Scholar 

  3. S. Waxman and K. C. Anderson, History of the development of arsenic derivatives in cancer therapy, Oncologist 6, 3–10 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. W. H. Miller, Jr., H. M. Schipper, J. S. Lee, J. Singer, and S. Waxman, Mechanisms of action of arsenic trioxide, Cancer Res. 62 3893–3903 (2002).

    PubMed  CAS  Google Scholar 

  5. A. J. Murgo, Clinical trials of arsenic trioxide in hematologic and solid tumors: overview of the National Cancer Institute. Cooperative Research and Development Studies, Oncologist 6, 22–28 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. P. Rousselot, S. Labaume, J. P. Marolleau, et al., Arsenic trioxide and melarsoprol induce apoptosis in plasma cell lines and in plasma cells from myeloma patients, Cancer Res. 59, 1041–1048 (1999).

    PubMed  CAS  Google Scholar 

  7. Y.-B. Chen, J. Hou, W.-J. Fu, et al., Mechanism of arsenic trioxide-induced cytotoxicity on multiple myeloma cells. Chin. J. Cancer 22, 1276–1279 (2003).

    CAS  Google Scholar 

  8. J. McCafferty-Grad, N. J. Bahlis, N. Krett, et al., Arsenic trioxide uses caspase-dependent and caspase-independent death pathways in myeloma cells, Mol. Cancer Ther. 2, 1155–1164 (2003).

    PubMed  CAS  Google Scholar 

  9. K. Chohen, Phase 1 study of arsenic trioxide and radiotherapy in pediatric patients with newly diagnosed anaplastic astrocytoma, glioblastoma multiform, gliosarcoma, or intrinsic pontine glioma. Available from http://www.cancer.gov/clinicaltrials/JHOC-J0423 (accessed 2004).

  10. I. C. Gibbs, G. Harsh, L. Tupper, L. Recht, and S. J. Knox, Phase I trial of arsenic trioxide and fractionated stereotactic radiation for, recurrent malignant glioma, Int. J. Radiat. Oncol. Biol. Phys. 63 (Suppl 1), S158 (2005).

    Article  Google Scholar 

  11. S. Zhao, T. Tsuchida, K. Kawakami, C. Shi, and K. Kawamoto, Effect of As2O3 on cell cycle progression and cyclins D1 and B1 expression in two glioblastoma cell lines differing in p53 status, Int. J. Oncol., 21, 49–55 (2002).

    PubMed  Google Scholar 

  12. T. Kanzawa, Y. Kondo, H. Ito, S. Kondo, and I. Germano, Induction of autophagic cell death in malignant glioma cells by arsenic trioxide, Cancer Res. 63, 2103–2108 (2003).

    PubMed  CAS  Google Scholar 

  13. T. Kanzawa, L. Zhang, L Xiao, I. M. Germano, Y. Kondo., and S. Kondo, Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3, Oncogene 24, 980–991 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. L. M. Del Razo, B. Quintanilla-Vega, E. Brambila-Colombres, E. S. Calderón-Aranda, M. Manno, and A. Albores, Stress proteins induced by arsenic, Toxicol. Appl. Pharmacol. 177, 132–148 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. B. H. L. Vallee and W. Maret, The functional potential and potential functions of Metallothioneins: a personal perspective, in Metallothionein III: Biological Roles and Medical Implications [Third International Conference on Metallothionein], K. T. Suzuki, N. Imura, and M. Kimura, eds., Birkhäuser, Boston, pp. 1–27 (1993).

    Google Scholar 

  16. M. Sato, S. Misao, and H. Hiroshi, Induction of metallothionein synthesis by oxidative stress and possible role in acute phase response, in Metallothionein III: Biological Roles and Medical Implications [Third International Conference on Metallothionein], K. T. Suzuki, N. Imura, and M. Kimura, eds., Birkhäuser, Boston, pp. 126–140 (1993).

    Google Scholar 

  17. A. T. Miles, G. M. Hawksworth, J. H. Beattie, and V. Rodilla, Induction, regulation, degradation and biological significance of mammalian metallothioneins., Crit. Rev. Biochem. Mol. Biol. 35, 35–70 (2000).

    Article  PubMed  CAS  Google Scholar 

  18. G. Jiang, Z. Gong, X-F Li, W. R. Cullen, and C. Le, Interaction of trivalent arsenicals with metallothionein, Chem. Res. Toxicol. 16, 873–880 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. T. G. Rossman, Mechanism of arsenic carcinogenesis: an integrated approach, Mutat. Res. 533, 37–65 (2003).

    PubMed  CAS  Google Scholar 

  20. M. Vahter and G. Concha, Role of metabolism in arsenic toxicity, Pharmacol. Toxicol. 89, 1–5 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. O. L. Valenzuela, V. L. Borja-Aburto, G. G. Garcia-Vargas, et al., Urinary trivalent methylated arsenic species in a population chronically exposed to inorganic mercury, Environ. Health Perspect. 113, 250–254 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. K. T. Suzuki, Metabolomics of arsenic based on speciation studies, Anal. Chem. Acta 540, 71–76 (2005).

    Article  CAS  Google Scholar 

  23. A. V. Hirner, Speciation of alkylated metals and metalloids in the environment, Anal. Bioanal. Chem. 385, 555–567 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. K. A. Francesconi, Current perspectives in arsenic environmental and biological research, Environ. Chem. 2, 141–145 (2005).

    Article  CAS  Google Scholar 

  25. C. Kojima, C. W. Qu, M. P. Waalkes, S. Himeno, and T. Sakurai, Cronic exposure to methylated arsenic stimulates arsenic pathways and induces arsenic tolerance in rat liver cells, Toxicol. Sci. 91, 70–81 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. T. Hayakawa, Y. Kobayashi, X. Cui, and S. Hirano, A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19, Arch. Toxicol. 79, 183–191 (2005).

    Article  PubMed  CAS  Google Scholar 

  27. H. V. Aposhian, R. A. Zakharyan, M. D. Avram, M. J. Kopplin, and M. L. Wollenberg, Oxidation and detoxification of trivalent arsenic species, Tooxicol. Appl. Pharmacol. 193, 1–8 (2003).

    Article  CAS  Google Scholar 

  28. H. V. Aposhian and M. M. Aposhian, Arsenic toxicology: five questions, Chem. Res. Toxicol. 19, 1–15 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. Z.-X. Shen, G.-Q. Chen, J.-H. Ni, et al., Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients, Blood 89, 3354–3360 (1997).

    PubMed  CAS  Google Scholar 

  30. T. Mosmann, Rapid colometric assay for cell growth and survival: application to proliferation and cytotoxicity assays, J. Immun. Methods 65, 55–66 (1983).

    Article  CAS  Google Scholar 

  31. Z. Šlejkovec, J. T. van Elteren, and U. D. Woroniecka, Underestimation of the total arsenic concentration by hydride generation techniques as a consequence of the incomplete mineralisation of arsenobetaine in acid digestion procedures, Anal. Chim. Acta 443, 277–282 (2001).

    Article  Google Scholar 

  32. A. R. Byrne and A. Vakselj, Rapid neutron activation analysis of arsenic in a wide range of samples by solvent extraction of the iodide, Croatica Chem. Acta 46, 225–235 (1974).

    Google Scholar 

  33. W. Goessler and M. Pavkov, Accurate quantification and biotransformation of arsenic compounds during wet ashing with nitric acid and microwave assisted heating, Analyst 128, 796–802 (2003).

    Article  PubMed  CAS  Google Scholar 

  34. A. Yasutake, M. Satoh, C. Tohyama, and K. Hirayama Selective and simple quantification of metallothionein III in mouse brain, J. Health Sci. 45, 222–225 (1999).

    CAS  Google Scholar 

  35. Q. Chen, G. Espey, M. C. Krishna, et al., Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues, PNAS 102, 13,604–13,609 (2005).

    CAS  Google Scholar 

  36. N. Karasavvas, J. M. Carcamo, G. Stratis, and D. W. Golde, Vitamin C protects HL60 and U266 cells from arsenic toxicity, Blood 105, 4004–4012 (2006).

    Article  CAS  Google Scholar 

  37. P. Zhou, N. Kalakonda, and R. L. Comenzo, Changes in gene expression profiles of multiple myeloma cells induced by arsenic trioxide (ATO): possible mechanisms to explain ATO resistance, in vivo, Br. J. Haematol. 128, 636–644 (2005).

    Article  PubMed  CAS  Google Scholar 

  38. G. Q. Chen, L. Zhou, M. Styblo, et al., Methylated metabolites of arsenic trioxide are more potent than arsenic trioxide as apoptoptic but not differentiation inducers in leukemia and lymphoma cells, Cancer Res. 63, 1853–1859 (2003).

    PubMed  CAS  Google Scholar 

  39. J. Q. Li, Y. Li, Y. J. Shi, and S. L. Wu, Re-expression of p16 gene in myeloma cell line U266 by arsenic trioxide, Ai Zheng 23, 626–630 (2004).

    PubMed  CAS  Google Scholar 

  40. A. Raab, A. A. Meharg, M. Jaspars, D. R. Genney, and J. Feldman, Arsenic-glutathione complexes: their stability in solution and during separation by different HPLC modes, J. Anal. Atomic Spectrom. 19, 183–190 (2004).

    Article  CAS  Google Scholar 

  41. S. Hirano, X. Cui, S. Li, et al., Difference in uptake and toxicity of trivalent and pentavalent inorganic arsenic in heart microvessel endothelial cells, Arch. Toxicol. 77, 305–312 (2003).

    PubMed  CAS  Google Scholar 

  42. H. V. Aposhian, Z. A. Zakharyan, M. D. Avram, A. Sampayo-Reyes, and M. L. Wollberg, A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species, Toxicol. Appl. Pharmacol. 198, 327–335 (2004).

    Article  PubMed  CAS  Google Scholar 

  43. Y. Kikuchi, M. Irie, T. Kasahara, J. Sawada, and T. Terao, Induction of metallothionein in human astrocytoma cell line by interlevkin-1 and heavy metals, FEBS Lett. 317, 22–26 (1993).

    Article  PubMed  CAS  Google Scholar 

  44. M. Tušek-Žnidarič, I. Falnoga, A. Pucer, and J. Ščančar, Cadmium and metallothioneins in human astrocytomas (U87MG, IPDDC-2A), in Metals and Metallothionenin in Biology and medicine (Abstracts), 5th International Conference on Metallothionein, Beijing, 8–12 October, Chinese Academy of Science, Beijing, 2005, p. 43 (2005).

    Google Scholar 

  45. G. Schmolke, B. Elsenhans, C. Ehtechami, and W. Forth, Arsenic-copper interaction in the kidney of the rat, Hum. Exp. Toxicol. 11, 315–321 (1992).

    Article  PubMed  CAS  Google Scholar 

  46. O. Ademuyiwa, B. Elsenhans, P. T. Nguyen, and W. Forth, Arsenic-copper interaction in the kidney of the rat: influence of arsenic metabolites, Pharmacol. Toxicol. 78, 54–60 (1996).

    Google Scholar 

  47. I-C. Ho and T-C. Lee, Sodium arsenite enhances copper accumulation in human lung adenocarcinoma cells, Toxicol. Sci. 47, 176–180 (1999).

    Article  PubMed  CAS  Google Scholar 

  48. M. Maret, The function of zinc metallothionein: a link between cellular zinc and redox state, J. Nutr. 130, 1455S-1458S (2001).

    Google Scholar 

  49. M. Maret and B. L. Vallee, Thiolate ligands in metallothionein confer redox activity on zinc cluster, Proc. Natl. Acad. Sci. USA 95, 3478–3482 (1998).

    Article  PubMed  CAS  Google Scholar 

  50. M. C. Amoureux, T. Wurch, and P. J. Pauwels, Modulation of metallothionein-III mRNA content and growth rate of rat C6-glial cells by transfection with human 5-HTID receptor genes, Biochem. Biophys. Res. Commun. 214 639–645 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falnoga, I., Šlejkovec, Z., Pucer, A. et al. Arsenic metabolism in multiple myeloma and astrocytoma cells. Biol Trace Elem Res 116, 5–28 (2007). https://doi.org/10.1007/BF02685915

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02685915

Index Entries

Navigation