Skip to main content
Log in

Comparison of small-scale methods for the rapid extraction of plant DNA suitable for PCR analysis

  • Protocol
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

We present results from a comparison of six methods for rapid DNA extraction from leaf and other plant tissues. We have used samples from six plant species in our study, including both crop species and their wild relatives. The success of the methods is assessed by PCR of the DNA using conserved primers, and the applicability of the different methods to particular species and tissues is assessed. The speed, reliability, convenience, and potential for further improvement of the methods are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ICPMS:

inductively coupled plasma mass spectrometry

PCR:

polymerase chain reaction

RAPD:

random-amplified-polymorphic DNA

References

  • Baker, S.S., C.L. Rugh, and J.C. Kamalay. 1990. RNA and DNA isolation from recalcitrant plant tissues. BioTechniques 9:268–272.

    PubMed  CAS  Google Scholar 

  • Bramwell, P. A., R. V. Barallon, H.J. Rogers, and M.J. Bailey. 1995. Extraction of microbial DNA from the phylloplane. 1.4.3:1–21 inMolecular Microbial Ecology Manual, A.D.L. Akkermans, J.D. van Elsas, and F.J. de Bruijn, eds., Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • Cheung, W.Y., N. Hubert, and F.J. Landry. 1993. A simple and rapid DNA microextraction method for plant animal and insect suitable for RAPD and other PCR analyses. PCR Meths. Applics. 3:69–70.

    CAS  Google Scholar 

  • Chunwongse, J. G.B. Martin, and S.D. Tanksley. 1993. Pre-germination genotypic screening using PCR amplification of half-seeds. Theor. Appl. Genet. 86:694–698.

    Article  CAS  Google Scholar 

  • Cox, A.V., M.D. Bennett, and T.A. Dyer. 1992. Use of the polymerase chain reaction to detect spacer size heterogeneity in plant 5S-rRNA gene clusters and to locate such clusters in wheat (Triticum aestivum L.) Theor. Appl. Genet. 83:684–690.

    Article  CAS  Google Scholar 

  • de Haan, H. 1983. Use of ultraviolet spectroscopy, gel filtration, pyrolysis/mass spectrometry and numbers of benzoate-metabolising bacteria in the study of humification and degradation of aquatic organic matter. In,Aquatic and Terrestrial Humic Materials. R.F. Christman and E.T. Gjessing, eds. Ann Arbor Science, Michigan, USA.

    Google Scholar 

  • Do, N., and R.P. Adams. 1991. A simple technique for removing plant polysaccharide contaminants from DNA. BioTechniques 10:162–166.

    PubMed  CAS  Google Scholar 

  • Edwards, K., C. Johnstone, and C. Thompson. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl. Acids Res. 19:1349.

    Article  PubMed  CAS  Google Scholar 

  • Fang, G., S. Hammar, and R. Grumet. 1992. A quick and inexpensive method for removing polysaccharides from plant genomic DNA. BioTechniques 13:52–55.

    PubMed  CAS  Google Scholar 

  • Furukawa, K., and V.P. Bhavadna. 1983. Influences of amniotic polysaccharides on DNA synthesis in isolated nuclei by DNA polymerase: Correlation of observed effects with properties of the polysaccharides. Biochim. Biophys. Acta 740:466–475.

    PubMed  CAS  Google Scholar 

  • Guidet, F., 1994. A powerful new technique to quickly prepare hundreds of plant extracts for PCR and RAPD analyses. Nucl. Acids Res. 22:1772–1773.

    Article  PubMed  CAS  Google Scholar 

  • Marechal-Drouard, L., and P. Guillemaut. 1995. A powerful but simple technique to prepare polysaccharide-free DNA quickly and without phenol extraction. Plant Mol. Biol. Reptr. 13:26–30.

    CAS  Google Scholar 

  • Murphy, G., and T.A. Kavanagh. 1988. Speeding up the sequencing of double-stranded DNA. Nucl. Acids Res. 16:5198.

    Article  PubMed  CAS  Google Scholar 

  • Oard J.H., and S. Dronovalli (1992) Rapid isolation of rice and maize DNA for analysis by random primer PCR. Plant Mol. Biol. Reptr. 10:236–241.

    CAS  Google Scholar 

  • Ogram, A., G.S. Sayler, D. Gustin, and R.L. Lewis. 1988. DNA adsorption to soils and sediments. Environ. Sci. Technol. 22:982–984.

    Article  CAS  Google Scholar 

  • Rether, B., G. Delmas, and A. Laouedj. 1993. Isolation of polysaccharide-free DNA from plants. Plant Mol. Biol. Reptr. 11:333–337.

    Article  CAS  Google Scholar 

  • Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989.Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Sping Harbor, NY.

    Google Scholar 

  • Shioda, M., and K. Marakami-Muofushi. 1987. Selective inhibition of DNA polymerase by a polysaccharide purified from slime ofPhysarum polycephalum. Biochem. Biophys. Res. Commun. 146:61–66.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, P.S., D.A. Metzger, and R. Higuchi. 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10:506–513.

    PubMed  CAS  Google Scholar 

  • Wang, H., M. Qi, and J. Cutler. 1993. A simple method of preparing plant samples for PCR. Nucl. Acids Res. 21:4153–4154.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, H.J., Burns, N.A. & Parkes, H.C. Comparison of small-scale methods for the rapid extraction of plant DNA suitable for PCR analysis. Plant Mol Biol Rep 14, 170–183 (1996). https://doi.org/10.1007/BF02684906

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684906

Key Words

Navigation