Skip to main content
Log in

Time-frequency coherence analysis of atrial fibrillation termination during procainamide administration

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A time-frequency coherence estimator is developed and applied to study changes in signal characteristics as atrial fibrillation converts to sinus rhythm during administration of procainamide. A coherence spectrogram (CS) using multiple sinusoidal tapers is used in this study to assess phase relations between electrogram recordings at multiple atrial sites of seven patients who received procainamide to terminate atrial fibrillation. CSs are calculated (0 to 60 Hz) with 1 sec time resolution and 6.2 Hz frequency resolution. In agreement with previous studies, CSs generally exhibit low coherence during atrial fibrillation. Conversion to sinus rhythm is concomitant with an increase in coherence and emergence of structured time-frequency topography. Transition from atrial fibrillation to sinus rhythm is associated with a variety of time-frequency dynamics. Both gradual and abrupt increases in coherence coincide with conversion. Results suggest transient electrical organization in the atria during atrial fibrillation not seen in previous low-resolution coherence studies. CSs permit investigation of rhythm organization with unparalleled time and frequency resolution and thus are useful for studying transient changes in cardiac rhythms that may reflect underlying mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allessie, M., W. Lammers, J. Smeets, et al. Total mapping of atrial excitation during acetylcholine-induced atrial flutter and fibrillation in the isolated canine heart. In: Atrial fibrillation: Proceedings of a Symposium Held in Kiruna, Sweden, June 24–27, 1981, edited by H. E. Kulbertus, S. B. Olsson, and M. Schlepper. Mölndal Sweden: AB Hässle, 1982, pp. 44–61.

    Google Scholar 

  2. Baerman, J. M., K. M. Ropella, A. V. Sahakian, J. A. Kirsh, and S. Swiryn. Effect of bipole configuration on atrial electrograms during atrial fibrillation.PACE 13:78–87, 1990.

    PubMed  CAS  Google Scholar 

  3. Benditt, D. G., W. Benson, A. Dunningan, C. C. Gornick, and R. W. Anderson. Atrial flutter, atrial fibrillation, and other primary atrial tachycardias.Med. Clin. North Am. 68:895–918, 1984.

    PubMed  CAS  Google Scholar 

  4. Bennett, M. A., and B. A. Pentecost. The pattern of onset and spontaneous cessation of atrial fibrillation in man.Circulation 41:981–988, 1970.

    PubMed  CAS  Google Scholar 

  5. Botteron, G. W., and J. M. Smith. A technique for measurement of the extent of spatial organization of atrial activation during atrial fibrillation in the intact human heart.IEEE Trans. Biomed. Eng. 42:579–586, 1995.

    Article  PubMed  CAS  Google Scholar 

  6. Bronez, T. P. On the performance advantage of multitaper spectral analysis.IEEE Trans. Sign. Proc. 50:2941–2946, 1992.

    Article  Google Scholar 

  7. Carter, G. C., C. H. Knapp, and A. H. Nuttal. Estimation of the magnitude-squared coherence function via overlapped fast Fourier transform processing.IEEE Trans. Audio Electroacoust. 21:337–344, 1983.

    Article  Google Scholar 

  8. Cohen, L.. Time-frequency distributions—a review.Proc. IEEE 77:941–981, 1989.

    Article  Google Scholar 

  9. Damle, R. S., N. M. Kanaan, N. S. Robinson, Y. Gee, J. J. Goldberger, and A. H. Kadish. Spatial and temporal linking of epicardial activation directions during ventricular fibrillation in dogs: evidence for underlying organization.Circulation 86:1547–1558, 1992.

    PubMed  CAS  Google Scholar 

  10. Fenster, P. E., K. Comess, R. Marsh, C. Katzenberg, and W. D. Hager. Conversion of atrial fibrillation to sinus rhythm by acute intravenous procainamide infusion.Am. Heart J. 106:501–504, 1983.

    Article  PubMed  CAS  Google Scholar 

  11. Frazer, G., and B. Boashash. Multiple window spectrogram and time-frequency distributions.Proc. Conf. IEEE ICASSP 4:293–296, 1994.

    Google Scholar 

  12. Gerstenfeld, E. P., A. V. Sahakian, J. M. Baerman, K. M. Ropella, and S. Swiryn. Detection of changes in atrial endocardial activation with use of an orthogonal catheter.J. Am. Coll. Cardiol. 18:1034–1042, 1991.

    Article  PubMed  CAS  Google Scholar 

  13. Halpern, S. W., G. Ellrodt, B. N. Singh, and W. J. Mandel. Efficacy of intravenous procainamide infusion in converting atrial fibrillation to sinus rhythm. Relation to left atrial size.Br. Heart J. 44:589–595, 1980.

    PubMed  CAS  Google Scholar 

  14. Hlawatsch, F., and G. F. Boudreaux-Bartels. Linear and quadratic time-frequency signal representations.IEEE Sign. Proc. Magn. 9:21–67, 1992.

    Article  Google Scholar 

  15. Jeong, J., and W. J. Williams. Mechanism of the cross-terms in spectrograms.IEEE Trans. Sign. Proc. 40:2608–2613, 1992.

    Article  Google Scholar 

  16. Josephson, M. E., A. R. Caracta, M. A. Ricciutti, S. H. Lau, and A. N. Damato. Electrophysiologic properties of procainamide in man.Am. J. Cardiol. 33:596–603, 1974.

    Article  PubMed  CAS  Google Scholar 

  17. Kayden, H. J., B. B. Brodie, and J. M. Steeles. Procaine amide. A review.Circulation 15:118–126, 1957.

    PubMed  CAS  Google Scholar 

  18. Killip, T., and J. Gault. Mode of onset of atrial fibrillation in man.Am. Heart. J. 70:172–179, 1965.

    Article  PubMed  CAS  Google Scholar 

  19. Marriott, H. J. L. Practical Electrocardiography (eighth edition). Baltimore: Williams & Wilkins, 1988, 556 pp.

    Google Scholar 

  20. McCord, M. C., and J. T. Taguchi. A study of the effect of procaine amide hydrochloride in supraventricular arrhythmias.Circulation 4:387–393, 1951.

    PubMed  CAS  Google Scholar 

  21. Moe, G. K.. On the multiple wavelet hypothesis of atrial fibrillation.Arch. Int. Pharmacodyn. Ther. 140:183–188, 1962.

    Google Scholar 

  22. Miller, G., S. L. Weinberg, and A. Pick. The effect of procainamide in clinical auricular fibrillation and flutter.Circulation 6:41–50, 1952.

    PubMed  CAS  Google Scholar 

  23. Miller, H., M. H. Nathanson, and G. C. Griffith. The action of procaine amide in cardiac arrhythmias.J.A.M.A. 146: 1004–1010, 1951.

    CAS  Google Scholar 

  24. Ogunkelu, J. B., A. N. Damato, M. Akhtar, C. P. Reddy, A. R. Caracta, and S. H. Lau. Electrophysiologic effects of procainamide in subtherapeutic to therapeutic doses on human atrioventricular conduction system.Am. J. Cardiol. 37: 724–731, 1976.

    Article  PubMed  CAS  Google Scholar 

  25. Percival, D. B., and A. T. Walden. Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques. New York: Cambridge University Press, 1993, 583 pp.

    Google Scholar 

  26. Priestley, M. B. Spectral Analysis and Time Series. New York: Academic Press, 1981, 890 pp.

    Google Scholar 

  27. Riedel, K. S., and A. Sidorenko. Minimum bias multiple taper spectral estimation.IEEE Trans Sign. Proc. 43:188–195, 1995.

    Article  Google Scholar 

  28. Ropella, K. M., A. V. Sahakian, J. M. Baerman, and S. Swiryn. Effects of procainamide on intra-atrial electrograms during atrial fibrillation: implications for detection algorithms.Circulation 77:1047–1054, 1988.

    PubMed  CAS  Google Scholar 

  29. Ropella, K. M., A. V. Sahakian, J. M. Baerman, and S. Swiryn. The coherence spectrum: a quantitative discriminator of fibrillatory and nonfibrillatory rhythms.Circulation 80:112–119, 1989.

    PubMed  CAS  Google Scholar 

  30. Ropella, K. M., A. V. Sahakian, J. M. Baerman, and S. Swiryn. Effect of data segmentation on coherence estimates of cardiac rhythms.Proc. Conf. IEEE EMBS 1:16–17, 1989.

    Google Scholar 

  31. Ropella, K. M., J. M. Baerman, A. V. Sahakian, and S. Swiryn. Differentiation of ventricular tachyarrhythmias.Circulation 82:2035–2043, 1990.

    PubMed  CAS  Google Scholar 

  32. Sano, T., and A. Scher. Multiple recording during electrically induced atrial fibrillation.Circulation 14:117–125, 1964.

    CAS  Google Scholar 

  33. Schlachman, M., J. W. Benjamin, and R. Terranova. The termination of auricular fibrillation in dogs with procaine amide hydrochloride.Am. Heart J. 42:284–291, 1951.

    Article  PubMed  CAS  Google Scholar 

  34. Sih, H. J., K. M. Ropella, S. Swiryn, E. P. Gerstenfeld, and A. V. Sahakian. Observations from intraatrial recordings on the termination of electrically induced atrial fibrillation in humans.PACE 17:1231–1242, 1994.

    PubMed  CAS  Google Scholar 

  35. Thomson, D. J.. Spectrum estimation and harmonic analysis.Proc. IEEE 70:1055–1096, 1982.

    Article  Google Scholar 

  36. Walden, A. T., E. J. McCoy, and D. B. Percival. The effective bandwidth of a multitaper spectral estimator.Biometrika 82:201–214, 1995.

    Article  Google Scholar 

  37. Widmalm, S. E., W. J. Williams, and C. Zheng. Time frequency distributions of TMJ sounds.J. Oral Rehabil. 18: 403–412, 1991.

    Article  PubMed  CAS  Google Scholar 

  38. Saveri, H. P., W. J. Williams, L. D. Iasemidis, and J. C. Sackellares. Time-frequency representation of electrocorticograms in temporal lobe epilepsy.IEEE Trans. Biomed. Eng. 39:502–509, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovett, E.G., Ropella, K.M. Time-frequency coherence analysis of atrial fibrillation termination during procainamide administration. Ann Biomed Eng 25, 975–984 (1997). https://doi.org/10.1007/BF02684133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684133

Keywords

Navigation