Skip to main content
Log in

Autostability of hyperarithmetical models

  • Published:
Algebra and Logic Aims and scope

Abstract

Let\(\mathfrak{M}\) be a Δ 11 -constructivizable model. If its Scott rank\(sr(\mathfrak{M})\) is strictly less than ω CK1 , then it is proved autostable. But if\(sr(\mathfrak{M}) = \omega _1^{CK} \), then there exists an ordinal α<ω CK1 for which\(\mathfrak{M}\) is not autostable in any degree O(γ+1) for all γ>α. We also consider some problems concerning Δ 11 -autostability of Δ 11 -constructivizable Boolean algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Goncharov,Countable Boolean Algebras and Decidability [in Russian], Nauch. Kniga, Novosibirsk (1996).

    MATH  Google Scholar 

  2. Yu. L. Ershov, Problems of Decidability and Constructive Models [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  3. H. Rogers,Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967).

    MATH  Google Scholar 

  4. C. J. Ash, “Categoricity in hyperarithmetical degrees,”Ann. Pure Appl. Log.,34, No. 1, 1–34 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Barwise,Admissible Sets and Structures, Springer, Berlin (1975).

    MATH  Google Scholar 

  6. O. V. Kudinov, “A description of autostable models,”Algebra Logika,36, No. 1, 26–36 (1997).

    MathSciNet  Google Scholar 

  7. V. V. Rybakov, “Criteria for admissibility of inference rules. Modal and intermediate logies with the branching property,”Stud. Log.,53, No. 2, 203–226 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  8. V. V. Rybakov,Admissibility of Logical Inference Rules. Stud. Log. Found. Math., Vol. 136, Elsevier, Amsterdam (1997).

    Google Scholar 

  9. L. L. Maksimova. “Pretable extensions of the Lewis logic S4,”Algebra Logika,14, No. 1, 28–55 (1975).

    MathSciNet  Google Scholar 

  10. L. Esakia and V. Meskhi, “The critical modal systems,”Theoria,43, 52–60 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  11. L. L. Maksimova, “Pretable superintuitionistic logics,”Algebra Logika,11, No. 5, 558–570 (1972).

    MATH  MathSciNet  Google Scholar 

  12. A. Chagrov and M. Zakharyaschev,Modal Logics, Oxford Logic Studies, Vol. 35, Clarendon, Oxford (1997).

    Google Scholar 

  13. R. Wojcicki,Theory of Logical Calculi, Kluwer, Dordrecht (1988).

    Google Scholar 

  14. P. Lorenzen,Einführung in die Operative Logik und Mathematik, Springer, Berlin (1955).

    Google Scholar 

Download references

Authors

Additional information

Supported through the FP “Integration” and the RP “Universities of Russia. Fundamental Research.”

Translated fromAlgebra i Logika, Vol. 39, No. 2, pp. 198–205, March–April, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romina, A.V. Autostability of hyperarithmetical models. Algebr Logic 39, 114–118 (2000). https://doi.org/10.1007/BF02681665

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02681665

Keywords

Navigation