Skip to main content
Log in

The cholinergic neuronal phenotype in alzheimer′s disease

  • Original Contributions
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The synthesis, storage and release of acetylcholine (ACh) requires the expression of several specialized proteins, including choline acetyltransferase (ChAT) and the vesicular ACh transporter (VAChT). The VAChT gene is located within the first intron of the ChAT gene. This unique genomic organization permits coordinated activation of expression of the two genes by extracellular factors. Much less is known about factors that reduce the expression of the cholinergic phenotype. A cholinergic deficit is one of the primary features of Alzheimer’s disease (AD), and AD brains are characterized by amyloid deposits composed primarily of Aβ peptides. Although Aβ peptides are neurotoxic, part of the cholinergic deficit in AD could be attributed to the suppression of cholinergic markers in the absence of cell death. Indeed, we and others demonstrated that synthetic Aβ peptides, at submicromolar concentrations that cause no cytotoxicity, reduce the expression of cholinergic markers in neuronal cells. Another feature of AD is abnormal phospholipid turnover, which might be related to the progressive accumulation of apolipoprotein E (apoE) within amyloid plaques, leading perhaps to the reduction of apoE content in the CSF of AD patients. ApoE is a component of very low density lipoproteins (VLDL). As a first step in investigating a potential neuroprotective function of apoE, we determined the effects of VLDL on ACh content in neuronal cells. We found that VLDL increases ACh levels, and that it can partially offset the anticholinergic actions of Aβ peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, E., Casamenti, F., Giovannelli, L., Scali, C. and Pepeu, G. (1994). Administration of amyloid β-peptides into the medial septum of rats decreases acetylcholine release from hippocampusin vivo.Brain Res. 636: 162–164.

    Article  PubMed  CAS  Google Scholar 

  • Adler, J.E., Schleifer, L.S. and Black, I.B. (1989). Partial purification and characterization of a membranederived factor regulating neurotransmitter phenotypic expression.Proc. Natl. Acad. Sci. USA 86: 1080–1083.

    Article  PubMed  CAS  Google Scholar 

  • Alderson, R.F., Alterman, A.L., Barde, Y.-A. and Lindsay, R.M. (1990). Brain-derived neurotrophic factor increases survival and differentiated functions of rat septal cholinergic neurons in culture.Neuron 5: 297–306.

    Article  PubMed  CAS  Google Scholar 

  • Alfonso, A., Grundahl, K., Duerr, J.S., Han, H.-P. and Rand, J.B. (1993). TheCaenorhabditis elegans unc-17 gene: A putative vesicular acetylcholine transporter.Science 261: 617–619.

    Article  PubMed  CAS  Google Scholar 

  • Arendt, T., Schindler, C., Brückner, M.K., Eschrich, K., Bigl, V., Zedlick, D. and Marcova, L. (1997). Plastic neuronal remodeling is impaired in patients with Alzheimer’s disease carrying apolipoprotein ε4 allele.J. Neurosci. 17: 516–529.

    PubMed  CAS  Google Scholar 

  • Bahr, B.A., Clarkson, E.D., Rogers, G.A., Noremberg, K. and Parsons, S.M. (1992a). A kinetic and allosteric model for the acetylcholine transporter-vesamicol receptor in synaptic vesicles.Biochemistry 31: 5752–5762.

    Article  PubMed  CAS  Google Scholar 

  • Bahr, B.A., Noremberg, K., Rogers, G.A., Hicks, B.W. and Parsons, S.M. (1992b). Linkage of the acetylcholine transporter-vesamicol receptor to protoglycan in synaptic vesicles.Biochemistry 31: 5778–5784.

    Article  PubMed  CAS  Google Scholar 

  • Bamber, B.A., Masters, B.A., Hoyle, G.W., Brinster, R.L. and Palmiter, R.D. (1994). Leukemia inhibitory factor induces neurotransmitter switching in transgenic mice.Proc. Natl. Acad. Sci. USA 91: 7839–7843.

    Article  PubMed  CAS  Google Scholar 

  • Banner, L.R. and Patterson, P.H. (1994). Major changes in the expression of the mRNAs for cholinergic differentiation factor/leukemia inhibitory factor and its receptor after injury to adult peripheral nerves and ganglia.Proc. Natl. Acad. Sci. USA 91: 7109–7113.

    Article  PubMed  CAS  Google Scholar 

  • Barany, M., Chang, Y.C., Arus, C., Rustan, T. and Frey, W.H. (1985). Increased glycerol-3-phosphorylcholine in post-mortem Alzheimer’s brain.Lancet 1: 517.

    Article  PubMed  CAS  Google Scholar 

  • Bauerfeind, R., Galli, T., and De Camilli, P. (1996). Molecular mechanisms in synaptic vesicle recycling.J. Neurocytol 25: 701–715.

    Article  PubMed  CAS  Google Scholar 

  • Behl, C., Davis, J.B., Klier, F.G., and Schubert, D. (1994a). Amyloid β peptide induces necrosis rather than apoptosis.Brain Res. 645: 253–264.

    Article  PubMed  CAS  Google Scholar 

  • Behl, C., Davis, J.B., Lesley, R. and Schubert, D. (1994b). Hydrogen peroxide mediates amyloid β protein toxicity.Cell 77: 817–828.

    Article  PubMed  CAS  Google Scholar 

  • Bejanin, S., Cervini, R., Mallet, J. and Berrard, S. (1994). A unique gene organization for two cholinergic markers, choline acetyltransferase and a putative vesicular transporter of acetylcholine.J. Biol. Chem. 269: 21944–21947.

    PubMed  CAS  Google Scholar 

  • Bejanin, S., Habert, E., Berrard, S., Edwards, J.B., Loeffler, J.P. and Mallet, J. (1992). Promoter elements of the rat choline acetyltransferase gene allowing nerve growth factor inducibility in transfected primary cultured cells.J. Neurochem. 58: 1580–1583.

    Article  PubMed  CAS  Google Scholar 

  • Berrard, S., Varoqui, H., Cervini, R., Israël, M., Mallet, J. and Diebler, M.-F. (1995). Coregulation of two embedded gene products, choline acetyltransferase and the vesicular acetylcholine transporter.J. Neurochem. 65: 939–942.

    Article  PubMed  CAS  Google Scholar 

  • Berse, B. and Blusztajn, J.K. (1995). Coordinated up-regulation of choline acetyltransferase and vesicular acetylcholine transporter gene expression by the retinoic acid receptor α, cAMP, and leukemia inhibitory factor ciliary neurotrophic factor signaling pathways in a murine septal cell line.J. Biol. Chem. 270: 22101–22104.

    Article  PubMed  CAS  Google Scholar 

  • Berse, B. and Blusztajn, J.K. (1997). Modulation of cholinergic locus expression by glucocorticoids and retinoic acid is cell-type specific.FEBS Lett. 410: 175–179.

    Article  PubMed  CAS  Google Scholar 

  • Berse, B., López-Coviella, I. and Blusztajn, J.K. (1998). Effect of ciliary neurotrophic factor on cholinergic gene expression: modulation by nerve growth factor and glucocorticoids.J. Physiol. (Paris) 92: 409–410.

    Article  Google Scholar 

  • Berse, B., López-Coviella, I. and Blusztajn, J.K. (1999). Activation of TrkA by NGF upregulates expression of the cholinergic gene locus but attenuates the response to CNTF.Biochem. J. 342: 301–308.

    Article  PubMed  CAS  Google Scholar 

  • Bielarczyk, H. and Szutowicz, A. (1989). Evidence for the regulatory function of synaptoplasmic acetyl-CoA in acetylcholine synthesis in nerve endings.Biochem. J. 262: 377–380.

    PubMed  CAS  Google Scholar 

  • Bierer, L. M., Haroutunian, V., Gabriel, S., Knott, P. J., Carlin, L. S., Purohit, D. P., Perl, D.P., Schmeidler, J., Kanof, P. and Davis, K.L. (1995). Neurochemical correlates of dementia severity in Alzheimer’s disease: Relative importance of the cholinergic deficits.J. Neurochem. 64: 749–760.

    Article  PubMed  CAS  Google Scholar 

  • Blennow, K., Hesse, C. and Fredman, P. (1994). Cerebrospinal fluid apolipoprotein E is reduced in Alzheimer’s disease.Neuroreport 5: 2534–2536.

    Article  PubMed  CAS  Google Scholar 

  • Blusztajn, J.K., Liscovitch, M. and Richardson, U.I. (1987). Synthesis of acetylcholine from choline derived from phosphatidylcholine in a human neuronal cell line.Proc. Natl. Acad. Sci. USA 84:5474–5477.

    Article  PubMed  CAS  Google Scholar 

  • Blusztajn, J.K., Lopez Gonzalez-Coviella, I., Logue, M., Growdon, J.H. and Wurtman, R.J. (1990). Levels of phospholipid catabolic intermediates, glycerophosphocholine and glycerophosphoethanolamine, are elevated in brains of Alzheimer’s disease but not of Down’s syndrome patientsBrain Res. 536:240–244.

    Article  PubMed  CAS  Google Scholar 

  • Blusztajn, J.K. and Wurtman, R.J. (1983). Choline and cholinergic neurons.Science 221:614–620.

    Article  PubMed  CAS  Google Scholar 

  • Bowen, D.M., Smith, C.B., White, P. and Davison, A.N. (1976). Neurotransmitter related enzymes and indices of hypoxia in senile dementia and other abiotrophies.Brain 99: 459–496.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J.W., Okonmah, A.D., Soliman, K.F.A., Carballeira, A. and Fishman, L.M. (1988). Corticosteroid effects on cholinergic enzymes in ethanol-treated fetal brain cell cultures.Experientia 44: 898–900.

    Article  PubMed  CAS  Google Scholar 

  • Buxbaum, J. D., Liu, K. N., Luo, Y., Slack, J. L., Stocking, K. L., Peschon, J. J., Johnson, R. S., Castner, B. J., Cerretti, D. P., and Black, R. A. (1998). Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secreatase cleavage of the Alzheimer amyloid protein precursor.J Biol Chem 273: 27765–7.

    Article  PubMed  CAS  Google Scholar 

  • Cervini, R., Houhou, L., Pradat, P.F., Béjanin, S., Mallet, J. and Berrard, S. (1995). Specific vesicular acetylcholine transporter promoters lie within the first intron of the rat choline acetyltransferase gene.J. Biol. Chem. 270: 24654–24657.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, B.M., Renshaw, P.F., Stoll, A.L., Wurtman, R.J., Yurgelun-Todd, D. and Babb, S.M. (1995). Decreased brain choline uptake in older adults—Anin vivo proton magnetic resonance spectroscopy study.JAMA 274: 902–907.

    Article  PubMed  CAS  Google Scholar 

  • Collier, B., Poon, P. and Salehmoghaddam, S. (1972). The formation of choline and of acetylcholine by brainin vitro.J. Neurochem. 19: 51–60.

    Article  PubMed  CAS  Google Scholar 

  • Coyle, J.T., Oster-Granite, M.L., Reeves, R.H. and Gearhart, J.D. (1988). Down syndrome, Alzheimer’s disease and the trisomy 16 mouse.TINS 11:390–394.

    PubMed  CAS  Google Scholar 

  • Crowley, C., Spencer, S.D., Nishimura, M.C., Chen, K.S., Pitts-Meek, S., Armanini, M.P., Ling, L.H., McMahon, S.B., Shelton, D.L., Levinson, A.D. and Phillips, H.S. (1994). Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons.Cell 76: 1001–1011.

    Article  PubMed  CAS  Google Scholar 

  • Daniels, M.P. and Hamprecht, B. (1974). The ultrastructure of neuroblastoma glioma somatic cell hybrids. Expression of neuronal characteristics stimulated by dibutyryl adenosine 3′,5′ cyclic monophosphate.J. Cell Biol. 63: 691–699.

    Article  PubMed  CAS  Google Scholar 

  • Eiden, L.E. (1998). The cholinergic gene locus.J. Neurochem. 70: 2227–2240.

    Article  PubMed  CAS  Google Scholar 

  • Emerich, D.F., Lindner, M.D., Winn, S.R., Chen, E.Y., Frydel, B.R. and Kordower, J.H. (1996). Implants of encapsulated human CNTF-producing fibroblasts prevent behavioral deficits and striatal degeneration in a rodent model of huntington’s disease.J. Neurosci. 16: 5168–5181.

    PubMed  CAS  Google Scholar 

  • Emerich, D.F., Winn, S.R., Hantraye, P.M., Peschanski, M., Chen, E.Y., Chu, Y., McDermott, P., Baetge, E.E. and Kordower, J.H. (1997). Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington’s disease.Nature 386: 395–399.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, J.D., Varoqui, H., Schäfer, M.K.H., Modi, W., Diebler, M.-F., Weihe, E., Rand, J., Eiden, L.E., Bonner, T.I. and Usdin, T.B. (1994). Functional identification of a vesicular acetylcholine transporter and its expression from a “cholinergic” gene locus.J. Biol. Chem. 269: 21929–21932.

    PubMed  CAS  Google Scholar 

  • Fann, M.-J. and Patterson, P.H. (1994a). Depolarization differentially regulates the effects of bone morphogenetic protein (BMP)-2, BMP-6, and activin A on sympathetic neuronal phenotype.J. Neurochem. 63:2074–2079.

    Article  PubMed  CAS  Google Scholar 

  • Fann, M.-J. and Patterson, P.H. (1994b). Neuropoietic cytokines and activin A differentially regulate the phenotype of cultured sympathetic neurons.Proc. Natl. Acad. Sci. USA 91:43–47.

    Article  PubMed  CAS  Google Scholar 

  • Fann, M.J. and Patterson, P.H. (1995). Activins as candidate cholinergic differentiation factorsin vivo.Int J Dev Neurosci 13:317–330.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Chacon, R. and Sudhof, T.C. (1999). Genetics of synaptic vesicle function: toward the complete functional anatomy of an organelle.Annu Rev Physiol. 61:753–76.

    Article  PubMed  CAS  Google Scholar 

  • Gage, F.H., Tuszynski, M.H., Chen, K.S., Fagan, A.M. and Higgins, G.A. (1991). Nerve growth factor function in the central nervous system.Curr. Top. Microbiol. Immunol. 165:71–94.

    PubMed  CAS  Google Scholar 

  • Gilmor, M.L., Counts, S.E., Wiley, R.G. and Levey, A.I. (1998). Coordinate expression of the vesicular acetylcholine transporter and choline acetyltransferase following septohippocampal pathway lesion.J. Neurochem. 71:2411–2420.

    Article  PubMed  CAS  Google Scholar 

  • Giovannelli, L., Casamenti, F., Scali, C., Bartolini, L. and Pepeu, G. (1995). Differential effects of amyloid peptides β-(1–40) and β-(25–35) injections into the rat nucleus basalis.Neuroscience 66: 781–792.

    Article  PubMed  CAS  Google Scholar 

  • Goedert, M., Strittmatter, W.J. and Roses, A.D. (1994). Alzheimer’s disease: Risky apolipoprotein in brainNature 372:45–46.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, I., Grauer, E., Genis, I., Sehayek, E. and Michaelson, D.M. (1995). Memory deficits and cholinergic impairments in apolipoprotein E-deficient mice.Neurosci. Lett. 199:1–4.

    Article  PubMed  CAS  Google Scholar 

  • Green, L.A. and Tischler, A.S. (1976). Establishment of noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to NGF.Proc. Natl. Acad. Sci. USA 73:2424–2428.

    Article  Google Scholar 

  • Gruninger-Leitch, F., Berndt, P., Langen, H., Nelboeck, P. and Dobeli, H. (2000). Identification of betasecretase-like activity using a mass spectrometry-based assay system.Nat Biotechnol,18:66–70.

    Article  PubMed  CAS  Google Scholar 

  • Habecker, B.A., Tresser, S.J., Rao, M.S. and Landis, S.C. (1995). Production of sweat gland cholinergic differentiation factor depends on innervation.Dev. Biol. 167:307–316.

    Article  PubMed  CAS  Google Scholar 

  • Haga, T. and Noda, H. (1973). Choline uptake systems of rat brain synaptosomes.Biochim. Biophys. Acta 291:564–575.

    Article  PubMed  CAS  Google Scholar 

  • Hagg, T., Quon, D., Higaki, J. and Varon, S., (1992). Ciliary neurotrophic factor prevents neuronal degeneration and promotes low affinity NGF receptor expression in the adult rat CNS.Neuron 8:145–158.

    Article  PubMed  CAS  Google Scholar 

  • Hahm, S.H., Chen, L., Patel, C., Erickson, J., Bonner, T.I., Weihe, E., Schafer, M.K. and Eiden, L.E. (1997). Upstream sequencing and functional characterization of the human cholinergic gene locus.J. Mol. Neurosci. 9:223–236.

    PubMed  CAS  Google Scholar 

  • Hahn, M., Hahn, S.L., Stone, D.M. and Joh, T.H. (1992). Cloning of the rat gene encoding choline acetyltransferase, a cholinergic neuron-specific marker.Proc. Natl. Acad. Sci. U.S.A 89:4387–4391.

    Article  PubMed  CAS  Google Scholar 

  • Hama, T., Miyamoto, M., Tsukui, H., Nishio, C. and Hatanaka, H. (1989). Interleukin-6 as a neurotrophic factor for promoting the survival of cultured basal forebrain cholinergic neurons from postnatal rats.Neurosci. Lett. 104:340–344.

    Article  PubMed  CAS  Google Scholar 

  • Handelmann, G.E., Boyles, J.K., Weisgraber, K.H., Mahley, R.W. and Pitas, R.E. (1992). Effects of apolipoprotein E, beta-very low density lipoproteins, and choleterol on the extension of neurites by rabbit dorsat root ganglion neuronsin vitro.J. Lipid. Res. 33: 1677–1688.

    PubMed  CAS  Google Scholar 

  • Harkany, T., De Jong, G.I., Soós, K., Penke, B., Luiten, P.G.M. and Gulya, K. (1995a). β-Amyloid(1–42) affects cholinergic but not parvalbumin-containing neurons in the septal complex of the rat.Brain Res. 698:270–274.

    Article  PubMed  CAS  Google Scholar 

  • Harkany, T., Lengyel, Z., Soós, K., Penke, B., Luiten, P.G. and Gulya, K. (1995b). Cholinotoxic effects of β-amyloid(1–42) peptide on cortical projections, of the rat nucleus basalis magnocellularis.Brain Res. 695:71–75.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, M. and Patel, A.J. (1987). An interaction between thyroid hormone and nerve growth factor in the regulation of choline acetyltransferase in neuronal cultures, derived from the septal-diagonal band region of the embryonic rat brain.Dev. Brain Res. 36:109–120

    Article  CAS  Google Scholar 

  • Hefti, F., David, A. and Hartikka, J. (1984). Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions.Brain Res. 293:305–311.

    Article  PubMed  CAS  Google Scholar 

  • Hefti, F., Hartikka, J. and Bolger, M. (1986). Effect of thyroid hormone analogs on the activity of choline acetyltransferase in cultures of dissociated septal cells.Brain Res. 375:413–416.

    Article  PubMed  CAS  Google Scholar 

  • Henke, H. and Lang, W. (1983). Cholinergic enzymes in neocortex, hippocampus and basal forebrain of non-neurological and senile dementia of Alzheimer type patients.Brain Res. 267:281–291.

    Article  PubMed  CAS  Google Scholar 

  • Holler, T., Berse, B., Cermak, J.M., Diebler, M.-F. and Blusztajn, J.K. (1996). Differences in the developmental expression of the vesicular acetylcholine transporter and choline acetyltransferase in the rat brain.Neurosci. Lett. 212:107–110.

    Article  PubMed  CAS  Google Scholar 

  • Hoshi, M., Takashima, A., Murayama, M., Yasutake, K., Yoshida, N., Ishiguro, K., Hoshino, T. and Imahori, K. (1997). Nontoxic amyloid β peptide1–42 suppresses acetylcholine synthesis—Possible role in cholinergic dysfunction in Alzheimer’s disease.J. Biol. Chem. 272:2038–2041.

    Article  PubMed  CAS  Google Scholar 

  • Hussain, I., Powell, D., Howlett, D.R., Tew, D.G., Meek, T.D., Chapman, C., Gloger, I.S., Murphy, K.E., Southan, C.D., Ryan, D.M., Smith, T.S., Simmons, D.L., Walsh, F.S., Dingwall, C., and Christie, G. (1999).Identification of a novel aspartic protease (Asp 2) as beta-secretase.Mol Cell Neurosci 14:419–27.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, K., Oda, Y., Ichikawa, T. and Deguchi, T. (1990). Complementary DNAs for choline acetyltransferase from spinal cords of rat and mouse: Nucleotide sequences, expression in mammalian cells, andin situ hybridization.Mol. Brain Res. 7:151–159.

    Article  PubMed  CAS  Google Scholar 

  • Junard, E.O., Montero, C.N. and Hefti, F. (1990). Long-term administration of mouse nerve growth factor to adult rats with partial lesions of the cholinergic septohippocampal pathway.Exp. Neurol. 110:25–38.

    Article  PubMed  CAS  Google Scholar 

  • Kamegai, M., Konishi, Y. and Tabira, T. (1990a). Trophic effect of granulocyte-macrophage colony-stimulating factor on central cholinergic neuronsin vitro.Brain Res. 532:323–325.

    Article  PubMed  CAS  Google Scholar 

  • Kamegai, M., Niijima, K., Kunishita, T., Nishizawa, M., Ogawa, M., Araki, M., Ueki, A., Konishi, Y. and Tabira, T. (1990b) Interleukin 3 as a trophic factor for central cholinergic neuronsin vitro andin vivo.Neuron 4:429–436.

    Article  PubMed  CAS  Google Scholar 

  • Kar, S., Issa, A.M., Seto, D., Auld, D.S., Collier, B. and Quirion, R. (1998). Amyloid beta-peptide inhibits high-affinity choline uptake and acetylcholine release in rat hippocampal slices.J. Neurochem. 70:2179–2187.

    Article  PubMed  CAS  Google Scholar 

  • Kar, S., Seto, D., Gaudreau, P. and Quirion, R. (1996). β-Amyloid-related peptides inhibit potassium-evoked acetylcholine release from hippocampal slices.J. Neurosci. 16:1034–1040.

    PubMed  CAS  Google Scholar 

  • Kish, S.J., Distefano, L.M., Dozic, S., Robitaille, Y., Rajput, A., Deck, J.H.N. and Hornykiewicz, O. (1990). [3H] Vesamicol binding in human brain cholinergic deficiency disorders.Neurosci. Lett. 117:347–352.

    Article  PubMed  CAS  Google Scholar 

  • Klunk, W.E., Panchalingam, K., McClure, R.J. and Pettegrew, J.W. (1992). Brain metabolic alterations associated with clinical onset and course of Alzheimer’s disease.Ann. Neurol. 32:268.

    Google Scholar 

  • Koh, J., Yang, L.L. and Cotman, C.W. (1990). β-Amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage.Brain Res. 533:315–320.

    Article  PubMed  CAS  Google Scholar 

  • Koliatsos, V.E., Clatterbuck, R.E., Gouras, G.K. and Price, D.L. (1991a). Biologic effects of nerve growth factor on lesioned basal forebrain neurons.Ann. NY Acad Sci. 640:102–109.

    PubMed  CAS  Google Scholar 

  • Koliatsos, V.E., Clatterbuck, R.E., Nauta, H.J.W., Knüsel, B., Burton, L.E., Hefti, F.F., Mobley, W.C. and Price, D.L. (1991b). Human nerve growth factor prevents degeneration of basal forebrain cholinergic neurons in primates.Ann. Neurol. 30:831–840.

    Article  PubMed  CAS  Google Scholar 

  • Koliatsos, V.E., Clatterbuck, R.E., Winslow, J.W., Cayouette, M.H. and Price, D.L. (1993). Brain-derived neurotrophic factor is a trophic factor for motor neuronsin vivo, Neuro 10:359–367

    Article  CAS  Google Scholar 

  • Koliatsos, V.E., Nauta, H.J.W., Clatterbuck, R.E., Holtzman, D.M., Mobley, W.C. and Price, D.L. (1990). Mouse nerve growth factor prevents degeneration of axotomized basal forebrain cholinergic neurons in the monkey.J. Neurosci. 10:3801–3813.

    PubMed  CAS  Google Scholar 

  • Kowall, N.W., Beal, M.F., Busciglio, J., Duffy, L.K. and Yankner, B.A. (1991). Anin vivo model for the neurodegenerative effects of β amyloid and protection, by substance P.Proc. Natl. Acad. Sci. USA 88: 7247–7251.

    Article  PubMed  CAS  Google Scholar 

  • Kushima, Y. and Hatanaka, H. (1992). Interleukin-6 and leukemia inhibitory factor promote the survival of acetylcholinesterase-positive neurons in culture from embryonic rat spinal cord.Neurosci Lett. 143:110–114.

    Article  PubMed  CAS  Google Scholar 

  • LaDu, M.J., Falduto, M.T., Manelli, A.M., Reardon, C.A., Getz, G.S. and Frail, D.E. (1994). Isoform-specific binding of apolipoprotein E to β-amyloid.J. Biol. Chem. 269: 23403–23406.

    PubMed  CAS  Google Scholar 

  • Lammich, S., Kojro, E., Postina, R., Gilbert, S., Pfeiffer, R., Jasionowski, M., Haass, C. and Fahrenholz, F. (1999). Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease.Proc. Natl. Acad. Sci. USA 96:3922–7.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H.-C., Fellenz-Maloney M.-P., Liscovitch, M. and Blusztajn, J.K. (1993). Phospholipase D-catalyzed hydrolysis of phosphatidylcholine provides the choline precursor for acetylcholine synthesis in a human neuronal cell line.Proc. Natl. Acad. Sci. USA 90:10086–10090.

    Article  PubMed  CAS  Google Scholar 

  • Lefresne, P., Guyenet, P. and Glowinski, J. (1973). Acetylcholine synthesis from [2-14C]pyruvate in rat striatal slices.J. Neurochem.,20:1083–1097.

    Article  PubMed  CAS  Google Scholar 

  • Lemere, C.A., Blusztajn, J.K., Yamaguchi, H., Wisniewski, T., Saido, T.C. and Selkoe, D.J. (1996). Sequence of deposition of heterogeneous amyloid β-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation.Neurobiol. Disease 3:16–32.

    Article  CAS  Google Scholar 

  • Li, Y., Holtzman, D.M., Kromer, L.F., Kaplan, D.R., Chua-Couzens, J., Clary, D.O., Knüsel, B. and Mobley, W.C. ( (1995). Regulation of TrkA and ChAT expression in developing rat basal forebrain: Evidence that both exogenous and endogenous, NGF regulate differentiation of cholinergic neurons.J. Neurosci. 15:2888–2905.

    PubMed  CAS  Google Scholar 

  • Li, Y.-P., Baskin, F., Davis, R. and Hersh, L.B. (1993). Cholinergic neuron-specific expression of the human choline acetyltransferase gene is controlled by silencer elements.J. Neurochem. 61:748–751.

    Article  PubMed  CAS  Google Scholar 

  • Lönnerberg, P., Lendahl, U., Funakoshi, H., Ârhlund-Richter, L., Persson, H. and Ibáñez, C.F. (1995). Regulatory region in choline acetyltransferase gene directs developmental and tissue-specific expression in transgenic mice.Proc. Natl. Acad. Sci. USA 92:4046–4050.

    Article  PubMed  Google Scholar 

  • Lönnerberg, P., Schoenherr, C.J., Anderson, D.J. and Ibáñez, C.F. (1996). Cell type-specific regulation of choline acetyltransferase gene expression. Role of the neuron-restrictive silencer element and cholinergic-specific enhancer sequences.J. Biol. Chem. 271:33358–33365.

    Article  PubMed  Google Scholar 

  • Maden, M. and Holder, N. (1991). The involvement of retinoic acid in the development of the vertebrate central nervous system.Development 2:87–94.

    PubMed  Google Scholar 

  • Mahley, R.W. (1998). Apolipoprotein E: cholesterol transport protein with expanding role in cell biology.Science 240:622–630.

    Article  Google Scholar 

  • Marchbanks, R.M. and Wonnacott, S. (1979). Relationship of choline uptake to acetylcholine synthesis and release.Prog. Brain Res. 49:77–88.

    PubMed  CAS  Google Scholar 

  • McGeer, P.L., McGeer, E.G., Suzuki, J., Dolman, C.E. and Nagai, T. (1984). Aging, Alzheimer’s disease, and the cholinergic system of the basal forebrain.Neurology 34:741–745.

    PubMed  CAS  Google Scholar 

  • McManaman, J.L., Crawford, F.G., Stewart, S.S. and Appel, S.H. (1988). Purification of a skeletal muscle polypeptide which stimulates choline acetyltransferase activity in cultured spinal cord neurons.J. Biol. Chem. 263:5890–5897.

    PubMed  CAS  Google Scholar 

  • Miatto, O., Blusztajn, J.K., Logue, M., Gonzalez, G., Buonanno, F., and Growdon, J.H. (1989) Detection of phospholipids in brain tissue using31P NMR spectroscopy.Phospholipids in the nervous system: Biochemical and molecular pathology. (Bazan, N.G., Horrocks, L.A., and Toffano, G., eds.) pp. 243–250, Liviana Press, Padua

    Google Scholar 

  • Milner, T.A. (1991). Cholinergic neurons in the rat septal complex: Ultrastructural characterization and synaptic relations with catecholaminergic terminals.J. Comp. Neurol. 314:37–54.

    Article  PubMed  CAS  Google Scholar 

  • Misawa, H., Ishii, K. and Deguchi, T. (1992). Gene expression of mouse choline acetyltransferase. Alternative splicing and identification of a highly active promoter region.J. Biol. Chem. 267:20392–20399.

    PubMed  CAS  Google Scholar 

  • Misawa, H., Takahashi, R. and Deguchi, T. (1993). Transcriptional regulation of choline acetyltransferase gene by cyclic AMP.J. Neurochem. 60:1383–1387.

    Article  PubMed  CAS  Google Scholar 

  • Misawa, H., Takahashi, R. and Deguchi, T. (1995). Coordinate expression of vesicular acetylcholine transporter and choline acetyltransferase in sympathetic superior cervical neurones.Neuroreport 6:965–968.

    PubMed  CAS  Google Scholar 

  • Montero, C.N. and Hefti, F. (1988). Rescue of lesioned septal cholinergic neurons by nerve growth factor: Specificity and requirement for chronic treatment.J. Neurosci. 8:2986–2999.

    PubMed  CAS  Google Scholar 

  • Naciff, J.M., Behbehani, M.M., Misawa, H., and Dedman, J.R. (1999). Identification and transgenic analysis of a murine promoter that targets cholinergic neuron expression.J. Neurochem 72:17–28.

    Article  PubMed  CAS  Google Scholar 

  • Naciff, J.M., Misawa, H. and Dedman, J.R. (1997). Molecular characterization of the mouse vesicular acetylcholine transporter gene.Neuroreport 8:3467–3473.

    Article  PubMed  CAS  Google Scholar 

  • Nathan, B.P., Bellosta, S., Sanan, D.A., Weisgraber, K.H., Mahley, R.W. and Pitas, R.E. (1994). Differential effects of apolipoproteins E3 and E4 on neuronal growthin vitro.Science 264:850–852.

    Article  PubMed  CAS  Google Scholar 

  • Nathan, B.P., Chang, K.C., Bellosta, S., Brisch, E., Ge, N.F., Mahley, R.W. and Pitas, R.E. (1995). The inhibitory effect of apolipoprotein E4 on neurite outgrowth is associated with microtubule depolymerization.J. Biol. Chem. 270:19791–19799.

    Article  PubMed  CAS  Google Scholar 

  • Naumann, T., Kermer, P. and Frotscher, M. (1994). Fine structure of rat septohippocampal neurons. III. Recovery of choline acetyltransferase immunoreactivity after fimbria-fornix transection.J. Comp. Neurol. 350:161–170.

    Article  PubMed  CAS  Google Scholar 

  • Nitsch, R.M., Blusztajn, J.K., Pittas, A.G., Slack, B.E., Growdon, J.H. and Wurtman, R.J. (1992). Evidence for a membrane defect in Alzheimer disease brain.Proc. Natl. Acad. Sci. USA 89:1671–1675.

    Article  PubMed  CAS  Google Scholar 

  • Parducz, A., Joo, F. and Toldi, J. (1986). Formation of synaptic vesicles in the superior cervical ganglion of the cat: Choline dependency.Exp. Brain Res. 63:221–224.

    Article  PubMed  CAS  Google Scholar 

  • Parducz, A., Kiss, Z. and Joo, F. (1976). Changes of the phosphatidylcholine content and the number of synaptic vesicles in relation to neurohumoral transmission in sympathetic ganglia.Experientia 32:1520–1521.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, S.M., Bahr, B.A., Gracz, L.M., Kaufman, R., Kornreich, W.D., Nilsson, L. and Rogers, G.A. (1987). Acetylcholine transport: fundamental properties and effects of pharmacologic agents.Ann. NY. Acad. Sci. 493:220–233.

    Article  PubMed  CAS  Google Scholar 

  • Patel, A.J., Hayashi, M. and Hunt, A. (1988). Role of thyroid hormone and nerve growth factor in the development of choline acetyltransferase and other cell-specific marker enzymes in the basal forebrain of the rat.J. Neurochem. 50:803–811.

    Article  PubMed  CAS  Google Scholar 

  • Patterson, P.H. and Chun, L.L.Y. (1977). The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons.Dev. Biol. 56:263–280.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, R.C.A., Sofroniew, M.V., Cuello, A.C., Powell, T.P.S., Eckenstein, F., Esiri, M.M. and Wilcock, G.K. (1983). Persistence of cholinergic neurons in the basal nucleus in a brain with senile dementia of Alzheimer type demonstrated by immunohistochemical staining for choline acetyltransferase.Brain Res. 289:375–379.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, W.A., Berse, B., Schüler, U., Wainer, B.H. and Blusztajn, J.K. (1995). All-trans- and 9-cis-retinoic acid enhance the cholinergic properties of a murine septal cell line: Evidence that the effects are mediated by activation of retinoic acid receptor alpha.J. Neurochem. 65:50–58.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, W.A. and Blusztajn, J.K. (1997). Characterization of the acetylcholine-reducing effect of the amyloid-β peptide in mouse SN56 cells.Neurosci. Lett. 239:77–80.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, W.A., Guo, Q., Hartman, B.K., and Mattson, M.P. (1997). Nerve growth factor-independent reduction in choline acetyltransferase activity in PC12 cells expressing mutant presenilin-1.J. Biol. Chem.,272:22397–22400.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, W.A., Kloczewiak, M.A. and Blusztajn, J.K. (1996). Amyloid β-protein reduces acetylcholine synthesis in a cell line derived from cholinergic neurons of the basal forebrain.Proc. Natl. Acad. Sci. USA 93:8068–8071.

    Article  PubMed  CAS  Google Scholar 

  • Perry, E.K., Tomlinson, B.E., Blessed, G., Bergman, K., Gibson, P.H. and Perry, R.H. (1978). Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia.Br. Med. J. 2:1457–1459.

    Article  PubMed  CAS  Google Scholar 

  • Perry, R.H., Candy, J.M., Perry, E.K., Irving, D., Blessed, G., Fairburn, F. and Tomlinson, B.E. (1982). Extensive loss of choline acetyltransferase activity is not related to neuronal loss in nucleus of Meynert in Alzheimer’s disease.Neurosci. Lett. 33:311–315.

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew, J.W., Minshew, N.J., Cohen, M.M., Kopp, S.J. and Glonek, T. (1984).31P NMR changes in Alzheimer’s and Huntington’s disease brain.Neurology 34(suppl 1):281.

    Google Scholar 

  • Pike, C.J., Walencewicz, A.J., Glabe, C.G. and Cotman, C.W. (1991).In vitro aging of β-amyloid protein causes peptide aggregation and neurotoxicity.Brain Res. 563:311–314.

    Article  PubMed  CAS  Google Scholar 

  • Pirttila, T., Mehta, P.D., Soininen, H., Kim, K.S., Heinonen, O., Paljarvi, L. Kosunen, O., Riekkinen, P. and Wisniewski, H.M. (1996). Cerebrospinal fluid concentrations of soluble amyloid beta-protein and apolipoprotein E in patients with Alzheimer’s disease: correlations with amyloid load in the brain.Arch. Neurol. 53:189–193.

    PubMed  CAS  Google Scholar 

  • Poirier, J. (1994). Apolipoprotein E in animal models of CNS injury and in Alzheimer’s disease.Trends Neurosci. 17:525–530.

    Article  PubMed  CAS  Google Scholar 

  • Poirier, J., Delisle, M.C., Quirion, R., Aubert, I., Farlow, M., Lahiri, D., Hui, S., Bertrand, P., Nalbantoglu, J., Gilfix, B.M. and Gauthier, S. (1995). Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease.Proc. Natl. Acad. Sci. USA 92:12260–12264.

    Article  PubMed  CAS  Google Scholar 

  • Poirier, J., Hess, M., May, P.C. and Finch, C.E. (1991). Astrocytic apolipoprotein E mRNA and GFAP mRNA in hippocampus after entorhinal cortex lesioning.Brain Res. Mol. Brain Res. 11:97–106.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, K.N. and Kumar, S. (1974). Cyclic AMP and the differentiation of neuroblastoma cells in culture.Control of Proliferation in Animal Cells. (Clarkson, B. and Baserga, R., eds) pp. 581–594. Cold Spring Harbor Laboratory.

    Google Scholar 

  • Quastel, J.H., Tennenbaum, M. and Wheatley, A.H.M. (1936). Choline ester formation in, and cholinesterase of, tissuesin vitro.Biochem. J. 30:1668–1681.

    PubMed  CAS  Google Scholar 

  • Rao, M.S. and Landis, S.C. (1990). Characterization of a target-derived neuronal cholinergic differentiation factor.Neuron 5:899–910.

    Article  PubMed  CAS  Google Scholar 

  • Rao, M.S., Patterson, P.H. and Landis, S.C. (1992). Multiple cholinergic differentiation factors are present in footpad extracts: Comparison with known cholinergic factors.Development 116:731–744.

    PubMed  CAS  Google Scholar 

  • Rao, M.S., Sun, Y., Escary, J.L., Perreau, J., Tresser, S., Patterson, P.H., Zigmond, R.E., Brulet, P. and Landis, S.C. (1993). Leukemia inhibitory factor mediates an injury response but not a target-directed developmental transmitter switch in sympathetic neurons.Neuron 11:1175–1185.

    Article  PubMed  CAS  Google Scholar 

  • Roghani, A., Feldman, J., Kohan, S.A., Shirzadi, A., Gundersen, C.B., Brecha, N. and Edwards, R.H. (1994). Molecular cloning of a putative vesicular transporter for acetylcholine.Proc. Natl. Acad. Sci. USA 91:10620–10624.

    Article  PubMed  CAS  Google Scholar 

  • Roheim, P.S., Carey, M., Forte, T. and Vega, G.L. (1979). Apolipoproteins in human cerebrospinal fluid.Proc. Natl. Acad. Sci. U.S.A. 76:4646–4649.

    Article  PubMed  CAS  Google Scholar 

  • Ruberg, M., Mayo, W., Brice, A., Duyckaerts, C., Hauw, J.J., Simon, H., LeMoal, M. and Agid, Y. (1990). Choline acetyltransferase activity and [3H]vesamicol binding in the temporal cortex of patients with Alzheimer’s disease, Parkinson’s disease, and rats with basal forebrain lesions.Neuroscience 35:327–333.

    Article  PubMed  CAS  Google Scholar 

  • Saadat, S., Sendtner, M. and Rohrer, H. (1989). Ciliary neurotrophic factor induces cholinergic differentiation of rat sympathetic neurons in culture.J. Cell Biol. 108:1807–1816.

    Article  PubMed  CAS  Google Scholar 

  • Schmechel, D.E., Saunders, A.M., Strittmatter, W.J., Crain, B.J., Hulette, C.M., Joo, S.H., Pericak-Vance, M.A., Goldgaber, D. and Roses, A.D. (1993). Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease.Proc. Natl. Acad. Sci. USA 90:9649–9653.

    Article  PubMed  CAS  Google Scholar 

  • Schotzinger, R., Yin, X. and Landis, S. (1994) Target determination of neurotransmitter phenotype in sympathetic neurons.J. Neurobiol. 25:620–639.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, D., Behl, C., Lesley, R., Brack, A., Dargusch, R., Sagara, Y. and Kimura, H. (1995). Amyloid peptides are toxic via a common oxidative mechanism.Proc. Natl. Acad. Sci. USA 92:1989–1993.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe, D.J. (1994). Normal and abnormal biology of the β-amyloid precursor protein.Annu. Rev. Neurosci. 17:489–517.

    Article  PubMed  CAS  Google Scholar 

  • Sinha, S., Anderson, J.P., Barbour, R., Basi, G.S., Caccavello, R., Davis, D., Doan, M., Dovey, H.F., Frigon, N., Hong, J., Jacobson-Croak, K., Jewett, N., Keim, P., Knops, J., Lieberburg, I., Power, M., Tan, H., Tatsuno, G., Tung, J., Schenk, D., Seubert, P., Suomensaari, S. M., Wang, S., Walker, D., John, V. and others (1999). Purification and cloning of amyloid precursor protein beta-secretase from human brain.Nature 402:537–40.

    Article  PubMed  CAS  Google Scholar 

  • Slotkin, T.A., Nemeroff, C.B., Bissette, G. and Seidler, F.J. (1994). Overexpression of the high affinity choline transporter in cortical regions affected by Alzheimer’s disease. Evidence from rapid autopsy studies.J. Clin. Invest. 94:696–702.

    PubMed  CAS  Google Scholar 

  • Sofroniew, M.V., Cooper, J.D., Svendsen, C.N., Crossman, P., Ip, N.Y., Lindsay, R.M., Zafra, F. and Lindholm, D. (1993). Atrophy but not death of adult septal cholinergic neurons after ablation of target capacity to produce mRNAs for NGF, BDNF, and NT3.J. Neurosci. 13:5263–5276.

    PubMed  CAS  Google Scholar 

  • Sofroniew, M.V., Galletly, N.P., Isacson, O. and Svendsen, C.N. (1990). Survival of adult basal forebrain cholinergic neurons after loss of target neurons.Science 247:338–342.

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter, W.J., Saunders, A.M., Goedert, M., Weisgraber, K.H., Dong, L.-M., Jakes, R., Huang, D.Y., Pericak-Vance, M., Schmechel, D. and Roses, A.D. (1994). Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: Implications for Alzheimer disease.Proc. Natl. Acad. Sci. USA 91:11183–11186.

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter, W.J., Saunders, A.M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G.S. and Roses, A.D. (1993a). Apolipoprotein E: High-avidity binding to β-amyloid and inereased frequency of type 4 allele in late-onset familial Alzheimer disease.Proc. Natl. Acad. Sci. USA 90:1977–1981.

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter, W.J., Weisgraber, K.H., Huang, D.Y., Dong, L.-M., Salvesen, G.S., Pericak-Vance, M., Schmechel, D., Saunders, A.M., Goldgaber, D. and Roses, A.D. (1993b). Binding of human apoliopoprotein E to synthetic amyloid β peptide: Isoform-specific effects and implications for late-onset Alzheime disease.Proc. Natl. Acad. Sci. USA 90:8098–8102.

    Article  PubMed  CAS  Google Scholar 

  • Südhof, T.C. (1995). The synaptic vesicle cycle: A cascade of protein-protein interaction.Nature 375: 645–653.

    Article  PubMed  Google Scholar 

  • Suszkiw, J.B. and Pilar, G. (1976). Selective localization of a high affinity choline uptake system and its role in ACh formation in cholinergic nerve terminals.J. Neurochem. 26:1133–1138.

    Article  PubMed  CAS  Google Scholar 

  • Svendsen, C.N., Cooper, J.D. and Sofroniew, M.V. (1991). Trophic factor effects on septal cholinergic neurons.Ann. NY Acad. Sci. 640:91–94.

    PubMed  CAS  Google Scholar 

  • Szutowicz, A., Bielarczyk, H. and Lysiak, W. (1981). The role of citrate derived from glucose in the acetylcholine synthesis in rat brain synaptosomes.Int. J. Biochem. 13:887–892.

    Article  PubMed  CAS  Google Scholar 

  • Szutowicz, A., Jankowska, A., Blousztajn, J.K., and Tomaszewicz, M. (1999). Acetylcholine and acetyl-CoA metabolism in differentiating SN56 septal cell line.J Neurosci Res 57:131–6.

    Article  PubMed  CAS  Google Scholar 

  • Szutowicz, A., Morrison, M.R. and Srere, P.A. (1983). The enzymes of acetyl-CoA metabolism in differentiating cholinergic (S-20) and noncholinergic (NIE-115) neuroblastoma cells.J. Neurochem. 40:1664–1670.

    Article  PubMed  CAS  Google Scholar 

  • Szutowicz, A., Srere, P.A., Allen, C.N. and Crawford, I.L. (1982a). Effects of septal lesions on enzymes of acetyl-CoA metabolism in the cholinergic system of the rat hippocampus.J. Neurochem. 39:458–463.

    Article  PubMed  CAS  Google Scholar 

  • Szutowicz, A., Stepien, M., Bielarczyk, H., Kabata, J. and Lysiak, W. (1982b). ATP citrate lyase in cholinergic nerve endings.Neurochem. Res. 7:799–810.

    Article  PubMed  CAS  Google Scholar 

  • Takei, N., Kuramoto, H., Endo, Y. and Hatanaka, H. (1997). NGF and BDNF increase the immunoreactivity of vesicular acetylcholine transporter in cultured neurons from the embryonic rat septum.Neurosci. Lett. 226:207–209.

    Article  PubMed  CAS  Google Scholar 

  • Tian, X.T., Sun, X.Y. and Suszkiw, J.B. (1996). Developmental age-dependent upregulation of choline acetyltransferase and vesicular acetylcholine transporter mRNA expression in neonatal rat septum by nerve growth factor.Neurosci. Lett. 209:134–136.

    Article  PubMed  CAS  Google Scholar 

  • Toran-Allerand, C.D., Miranda, R.C., Bentham, W.D.L., Sohrabji, F., Brown, T.J., Hochberg, R.B. and MacLusky, N.J. (1992). Estrogen receptors colocalize with low-affinity nerve growth factor receptors in cholinergic neurons of the basal forebrain.Proc. Natl. Acad. Sci. USA 89:4668–4672.

    Article  PubMed  CAS  Google Scholar 

  • Tucek, S. (1990). The synthesis of acetylcholine: twnety years of progress.Prog. Brain Res. 84:467–477.

    Article  PubMed  CAS  Google Scholar 

  • Tuszynski, M.H., Buzsaki, G. and Gage, F.H. (1990). Nerve growth factor infusions combined with fetal hippocampal grafts enhance reconstruction of the lesioned septohippocampal projection.Neuroscience 36:33–44.

    Article  PubMed  CAS  Google Scholar 

  • Tuszynski, M.H., Sang U.H., Yoshida, K. and Gage, F.H. (1991). Recombinant human nerve growth factor infusions prevent cholinergic neuronal degeneration in the adult primate brain.Ann. Neurol. 30:625–636.

    Article  PubMed  CAS  Google Scholar 

  • Tuszynski, M.H.,U,H.S., Amaral, D.G. and Gage, F.H. (1990). Nerve growth factor infusion in the primate brain reduces lesion-induced cholinergic neuronal degeneration.J. Neurosci. 10:3604–3614.

    PubMed  CAS  Google Scholar 

  • Ulus, I.H., Wurtman, R.J., Mauron, C. and Blusztajn, J.K. (1989). Choline increases acetylcholine release and protects aganst the stimulation-induced decrease in phosphatide levels within membranes of rat corpus striatum.Brain Res. 484:217–227.

    Article  PubMed  CAS  Google Scholar 

  • Usdin, T.B., Eiden, L.E., Bonner, T.I. and Erickson, J.D. (1995). Molecular biology of the vesicular ACh transporter.TINS 18:218–224.

    PubMed  CAS  Google Scholar 

  • Vaca, K., Stewart, S.S. and Appel, S.H. (1989)., Identification of basic fibroblast growth factor as a cholinergic growth factor from human muscle.J. Neurosci. Res. 23:55–63.

    Article  PubMed  CAS  Google Scholar 

  • Vassar, R., Bennett, B.D., Babu=Khan, S., Kahn, S., Mendiaz, E. A., Denis, P., Teplow, D.B., Ross, S., Amarante, P., Loeloff, R., Luo, Y., Fisher, S., Fuller, J., Edenson, S., Lile, J., Jarosinski, M.A., Biere, A.L., Curran, E., Burgess, T., Louis, J.C., Collins, F., Treanor, J., Rogers, G., and Citron, M. (1999). Betasecretase cleavage of alzheimer’s amyloid precursor protein by the transmembrane asparticl protease BACE.Science 286:735–41.

    Article  PubMed  CAS  Google Scholar 

  • Vizi, E.S., Kobayashi, O., Torocsik, A., Kinjo, M., Nagashima, H., Manabe, N., Goldiner, P.L., Potter, P.E. and Foldes, F.F., (1989). Heterogeneity of presynaptic muscarinic receptors involved in modulation of transmitter release.Neuroscience 31:259–267.

    Article  PubMed  CAS  Google Scholar 

  • Vogels, O.J.M., Broere, C.A.J., Ter Laak, H.J., Ten Domkelaar, H.J., Nieuwenhuys, R. and Schulte, B.P.M. (1990). Cell loss and shrinkage in the nucleus basalis Meynert complex in Alzheimer’s disease.Neurobiol. Aging 11:3–13.

    Article  PubMed  CAS  Google Scholar 

  • Weisgraber, K.H. and Mahley, R.W. (1996). Human apolipoprotein E: the Alzheimer’s disease connection.FASEB J. 10:1485–1494.

    PubMed  CAS  Google Scholar 

  • Whitehouse, P.J., Price, D.L., Struble, R.G., Clark, A.W., Coyle, J.T. and DeLong, M.R. (1982). Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain.Science 215: 1237–1239.

    Article  PubMed  CAS  Google Scholar 

  • Whitson, J.S., Glabe, C.G., Shintani, E., Abcar, A. and Cotman, C.W. (1990). β-Amyloid protein promotes neuritic branching in hippocampal cultures.Neurosci. Lett. 110:319–324.

    Article  PubMed  CAS  Google Scholar 

  • Whitson, J.S., Selkoe, D.J. and Cotman, C.W. (1989). Amyloid β protein enhances the survival of hippocampal neuronsin vitro.Science 243:1488–1490.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, M.S., De Los Angeles, J., Miller, D.D., Xia, W., and Selkoe, D.J. (1999). Are presenilins intramembrane-cleaving proteases? Implications for the molecular mechanism of Alzheimer’s disease.Biochemistry 38:11223–30.

    Article  PubMed  CAS  Google Scholar 

  • Wu, D. and Hersh, L.B. (1994). Choline acetyltransferase: Celebrating its fiftieth year.J. Neurochem. 62:1653–1663.

    Article  PubMed  CAS  Google Scholar 

  • Yamamori, T., Fukada, K., Aebersold, R., Korsching, S., Fann, M.-J. and Patterson, P.H. (1989). The cholinergic neuronal differentiation factor from heart cells is identical to leukemia inhibitory factor.Science 246:1412–1416.

    Article  PubMed  CAS  Google Scholar 

  • Yan, R., Bienkowski, M.J., Shuck, M.E., Miao, H., Tory, M.C., Pauley, A.M., Brashier, J.R., Stratman, N.C., Mathews, W.R., Buhl, A.E., Carter, D.B., Tomasselli, A.G., Parodi, L.A., Heinrikson, R.L., and Gurney, M.E. (1999). Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity.Nature 402:533–7.

    Article  PubMed  CAS  Google Scholar 

  • Yankner, B.A., Caceres, A. and Duffy, L.K. (1990a). Nerve growth factor potentiates the neurotoxicity of β amyloid.Proc. Natl. Acad. Sci. USA 87:9020–9023.

    Article  PubMed  CAS  Google Scholar 

  • Yankner, B.A., Dawes, L.R., Fisher, S., Villa-Komaroff, L., Oster-Granite, M.L. and Neve, R.L. (1989). Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease.Science 245:417–420.

    Article  PubMed  CAS  Google Scholar 

  • Yankner, B.A., Duffy, L.K. and Kirschner, D.A. (1990b). Neurotrophic and neurotoxic effects of amyloid β protein: Reversal by tachykinin neuropeptides.Science 250:279–282.

    Article  PubMed  CAS  Google Scholar 

  • Yates, C.M., Simpson, J., Gordon, A., Maloney, A.F., Allison, Y., Ritchie, I.M. and Urquhart, A. (1983). Catecholamines and cholinergic enzymes in pre-senile and senile Alzheimer-type dementia and Down’s syndrome.Brain Res. 280:119.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Krzysztof Blusztajn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blusztajn, J.K., Berse, B. The cholinergic neuronal phenotype in alzheimer′s disease. Metab Brain Dis 15, 45–64 (2000). https://doi.org/10.1007/BF02680013

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02680013

Keywords

Navigation