Skip to main content
Log in

Mathematical analysis of sideband instabilities with application to rayleigh-bénard convection

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

We introduce a new method for the analysis of sideband instabilities which are important for periodic patterns appearing in systems close to the instability threshold. The method relies on a two-fold application of the Liapunov-Schmidt reduction procedure, a first application to the nonlinear bifurcation problem and a second application to the linear spectral problem. We obtain rigorous results on the spectrum of the associated linearization in spaces allowing for general sideband perturbations by treating the sideband vector and the spectral parameter as small bifurcation parameters.

We apply the theory to the small roll solutions in the Rayleigh-Bénard convection and derive domains in Rayleigh, Prandtl, and wave number space where the rolls are unstable. We recover the Eckhaus, zigzag, and skew-varicose instabilities obtained earlier by formal methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Bernoff. Finite amplitude convection between stress-free boundaries; Ginzburg-Landau equations and modulation theory.Eur. J. Appl. Math. 5 (1994) 267–282.

    Article  MATH  MathSciNet  Google Scholar 

  2. T.J. Bridges, A. Mielke. A proof of the Benjamin-Feir instability.Arch. Rat. Mech. Anal. 133 (1995) 145–198.

    Article  MATH  MathSciNet  Google Scholar 

  3. T.J. Bridges, A. Mielke. Instability of spatially-periodic states for a family of semilinear PDE’s on an infinite strip.Math. Nachrichten 179 (1996) 5–25.

    Article  MATH  MathSciNet  Google Scholar 

  4. E.W. Bolton, F.H. Busse. Stabilities of convection rolls in a layer with stress-free boundaries.J. Fluid Mech. 150 (1984) 487–498.

    Article  Google Scholar 

  5. F.H. Busse, Stability regions of cellular fluid flow. InInstability of Continuous Systems, H. Leipholz (ed.), Proc. of the IUTAM Symposium in Bad Herrenalb 1969, Berlin: Springer-Verlag, 1971, 41–47.

    Google Scholar 

  6. F.H. Busse, E.W. Bolton. Instabilities of convection rolls with stress-free boundaries near threshold.J. Fluid Mech. 146 (1984) 115–125.

    Article  MATH  Google Scholar 

  7. P. Collet, J.-P. Eckmann.Instabilities and Fronts in Extended Systems. Princeton, NJ: Princeton University Press, 1990.

    MATH  Google Scholar 

  8. S.-N. Chow, J.K. Hale.Methods of Bifurcation Theory. New York: Springer-Verlag, 1985.

    Google Scholar 

  9. K. Damerow. A sufficient condition for the validity of the principle of reduced stability.Math. Nachrichten 154 (1991) 243–252.

    Article  MATH  MathSciNet  Google Scholar 

  10. W. Decker, W. Pesch. Order parameter and amplitude equations for the Rayleigh-Bénard convection.J. Phys. II France 4 (1994) 419–438.

    Article  Google Scholar 

  11. W. Eckhaus.Studies in Non-Linear Stability Theory. Berlin: Springer-Verlag. Springer Tracts in Nat. Phil. Vol.6, 1965.

    MATH  Google Scholar 

  12. M. Golubitsky, D.G. Schaeffer.Singularities and Groups in Bifurcation Theory Vol. I. New York: Springer-Verlag, 1985.

    Google Scholar 

  13. M. Golubitsky, I. Stewart, D.G. Schaeffer.Singularities and Groups in Bifurcation Theory Vol. II. New York: Springer-Verlag, 1988.

    Google Scholar 

  14. A. Hurwitz. Über die Bedingungen unter welchen eine Gleichung nur Wurzeln mit negativen reellen Teilen besitzt.Math. Ann. 46 (1895) 273–284.

    Article  MathSciNet  Google Scholar 

  15. H. Kielhöfer, R. Lauterbach. On the principle of reduced stability.J. Functional Anal. 53 (1983) 99–111.

    Article  MATH  Google Scholar 

  16. M. Kuwamura. The stability of roll solutions of the 2-D Swift-Hohenberg equation and the phase diffusion equation.SIAM J. Math. Anal. 27 (1996) 1311–1335.

    Article  MATH  MathSciNet  Google Scholar 

  17. Y. Kagei, W. von Wahl. Stability of convection roll solutions of Boussinesq equations in two space dimensions.Int. J. Non-Linear Mechanics (1996). To appear.

  18. A. Mielke. A new approach to sideband instabilities using the principle of reduced instability. InNonlinear Dynamics and Pattern Formation in the Natural Environment. A. Doelman, A. van Harten (eds.), Pitman Research Notes in Mathematics Series335. Longman, 1995. 206–222.

  19. A. Mielke. Instability and stability of rolls in the Swift-Hohenberg equation. Preprint Universität Hannover, 1996. Submitted toComm. Math. Physics.

  20. B. Malomed, M.I. Tribel’skii. Bifurcations in distributed kinetic systems with aperiodic instability.Physica D 14 (1984) 67–87.

    Article  MATH  MathSciNet  Google Scholar 

  21. A.C. Newell, T. Passot, J. Lega. Order parameter equations for patterns.Annu. Rev. Fluid Mech. 25 (1993) 399–453.

    Article  MathSciNet  Google Scholar 

  22. L. Recke. On linear stability of bifurcating equilibria.Math. Machrichten 140 (1989) 59–68.

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Renardy, R.C. Rogers.An Introduction to Parial Differential Equations. New York: Springer-Verlag, 1992.

    Google Scholar 

  24. J.T. Stuart, R.C. di Prima. The Eckhaus and the Benjamin-Feir resonance.Proc. Royal Soc. London,A 362 (1978) 27–41.

    Google Scholar 

  25. B.J. Schmitt, W. von Wahl. Decomposition of solenoidal fields into poloidal, toroidal and the mean flow. Applications to the Boussinesq equation. InThe Navier—Stokes Equation II-Theory and Numerical Methods. Proceedings Oberwolfach 1991. J.G. Heywood, K. Masuda, R. Rautmann, S.A. Solonnnikov (eds.). Lecture Notes in Math. 1530, Berlin: Springer-Verlag, 1992, 291–305.

    Chapter  Google Scholar 

  26. A. Vanderbauwhede. Stability of bifurcating equilibria and the principle of reduced stability. InBifurcation Theory and Applications, Proceedings of the CIME meeting in Montecatini 1983, L. Salvadori (ed.). Lecture Notes in Math. 1057. Berlin: Springer-Verlag, 1984, 209–223.

    Chapter  Google Scholar 

  27. A. Zippelius, E.D. Siggia. Stability of finite-amplitude convection.Phys. Fluids 26 (1983) 2905–2915.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Jerrold Marsden and Stephen Wiggins

This paper is dedicated to the memory of Juan C. Simo

This paper was solicited by the editors to be part of a volume dedicated to the memory of Juan C. Simo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mielke, A. Mathematical analysis of sideband instabilities with application to rayleigh-bénard convection. J Nonlinear Sci 7, 57–99 (1997). https://doi.org/10.1007/BF02679126

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02679126

Key words

MSC numbers

Navigation