Skip to main content
Log in

Interstitial atom configurations in stable and metastable Fe-N and Fe-C solid solutions

  • Transformations
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Mössbauer Fe57 spectroscopy allows comparison of Fe−N and Fe−C interstitial solid solutions. The spectra of Fe−N retained austenite indicate that nitrogen atoms are randomly distributed on octahedral sites in the austenite and in the virgin martensite. On heating, austenite decomposes directly to the equilibrium phases α iron and Fe4N at temperatures above 160°C. Virgin martensite ages at room temperature by local ordering of nitrogen atoms. In that process, three new iron atom environments develop, characteristic of the Fe16N2 (α″) structure. However, the excessive width of the peaks indicate the perfect order of the Fe16N2 precipitate is not achieved, except after very long times. Further aging at 100°C leads to the complete decomposition of the virgin martensite to the discrete phases α iron and Fe16N2. This two phase structure is stable up to 160°C, above which the precipitation of Fe4N occurs. These results are in contrast to Fe−C data. Carbon atoms in retained austenite tend to be far apart in their octahedral sites, and this nonrandom distribution is inherited by the virgin martensite. Fe−C austenite decomposes by the formation of ∈ carbide below 160°C and precipitation of Fe3C above 180°C. The carbon atoms in virgin martensite agglomerate at room temperature and regions of ordered Fe4C are believed to result. Subsequently ∈ carbon is formed at 80°C and Fe3C precipitates above 160°C.1

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. K. Choo and R. Kaplow:Acta Met., 1973, vol. 21, p. 725.

    Article  CAS  Google Scholar 

  2. G. Wertheim:Mössbauer Effect—Principles and Applications, Academic Press, New York, 1964.

    Google Scholar 

  3. P. M. Gielen and R. Kaplow:Acta Met., 1967, vol. 15, p. 49.

    Article  CAS  Google Scholar 

  4. H. Ino, T. Moriya, F. Fujita, and Y. Maeda:J. Phys. Soc. Jap., 1967, vol. 22, p. 346.

    CAS  Google Scholar 

  5. T. Moriya, H. Ino, F. Fujita, and Y. Maeda:J. Phys. Soc. Jap, 1968, vol. 24, p. 60.

    CAS  Google Scholar 

  6. H. Ino, T. Moriya, E. Fujita, Y. Maeda, Y. Ono, and Y. Inokuti:J. Phys. Soc. Jap., 1968, vol. 25, p. 88.

    CAS  Google Scholar 

  7. J. M. Genin and P. Flinn:Trans. TMS-AIME, 1968, vol. 242, p. 1419.

    CAS  Google Scholar 

  8. F. FujitaTopics in Applied Physics, U. Gonser, ed., vol. 5, Springer-Verlag, New York, 1975.

    Google Scholar 

  9. F. Fujita, C. Shiga, T. Moriya, and H. Ino: Jap. Inst. Metals, 1974, vol. 38, p. 1030.

    CAS  Google Scholar 

  10. C. Shiga, M. Kimura, and F. Fujita: Jap. Inst. Metals, 1974, vol. 38, p. 1037.

    CAS  Google Scholar 

  11. C. Shiga, F. Fujita, and M. Kimura:Jap. Inst. Metals., 1975, vol. 39, p. 1205.

    CAS  Google Scholar 

  12. M. Lesoille and P. M. Gielen:Met. Trans., 1972, vol. 3, p. 2681.

    Article  CAS  Google Scholar 

  13. L. Lysak and B. Nikolin:Fiz. Metal. Metalloved, 1966, vol. 22, p. 730.

    CAS  Google Scholar 

  14. L. Lysak, Y. Vouk, and Y. Polishchuk:Fiz. Metal. Metalloved., vol. 23, p. 898.

  15. M. Cohen:Trans. TMS-AIME, 1962, vol. 224, p. 638.

    CAS  Google Scholar 

  16. G. V. Kurdjumov and A. G. Khachaturyan:Acta Met., 1975, vol. 23, p. 1077.

    Article  Google Scholar 

  17. Y. Yamaoka, M. Mekata, and H. Takaki:J. Phys. Soc. Jap., 1973, vol. 35, p. 63.

    CAS  Google Scholar 

  18. J. M. Genin and J. Foct:Phys. Status Solidi (a), 1973, vol. 17, p. 395.

    Article  CAS  Google Scholar 

  19. T. Moriya, Y. Sumitomo, H. Ino, E. Fujita, and Y. Maeda:J. Phys. Soc. Jap., 1973, vol. 35, p. 1378.

    CAS  Google Scholar 

  20. T. Bell and W. S. Owen:Trans. TMS-AIME, 1967, vol. 239, p. 1940.

    CAS  Google Scholar 

  21. J. Cosgrove and R. Collins:Nucl. Instrum. Methods, 1971, vol. 95, p. 269.

    Article  CAS  Google Scholar 

  22. S. Hanna and R. Preston:Phys. Rev., 1965, vol. 139, no. 3A, p. 722.

    Article  CAS  Google Scholar 

  23. R. A. Arents, Yu. V. Maksimov, I. P. Suzdalev, V. K. Imshennik, and Yu. F. Krupyanskiy:Phys. Metal. Metallogr., 1973, vol. 36, p. 46.

    Google Scholar 

  24. N. DeCristofaro: S.M. Thesis, M.I.T., 1973.

  25. K. H. Jack:Proc. Roy. Soc., London 1951, vol. 208A, p. 216.

    Google Scholar 

  26. R. D. Garwood and G. Thomas:Met. Trans., 1973, vol. 4, p. 225.

    Article  CAS  Google Scholar 

  27. K. Moon:Trans. TMS-AIME, 1963, vol. 227, p. 1116.

    CAS  Google Scholar 

  28. T. Okabe and A. G. Guy:Met. Trnas., 1970, vol. 1, p. 2705.

    CAS  Google Scholar 

  29. T. Okabe and A. G. Guy:Met. Trans., 1973, vol. 4, p. 2673.

    CAS  Google Scholar 

  30. L. S. Darken and R. P. Smith:J. Amer. Chem. Soc., 1946, vol. 63, p. 1172.

    Google Scholar 

  31. H. I. Aaronson, H. A. Domain, and G. M. Pound:Trans. TMS-AIME, 1966, vol. 236, p. 753.

    CAS  Google Scholar 

  32. S. Ban-ya, J. Elliott, and J. Chipman:Trans. TMS-AIME, 1969, vol. 245, p. 1199.

    CAS  Google Scholar 

  33. S. Ban-ya, J. Elliott, and J. Chipman:Met. Trans., 1970, vol. 1, p. 1313.

    CAS  Google Scholar 

  34. L. Kaufman, S. Radcliffe, and M. Cohen:Decomposition of Austenite by Diffusional Process, V. F. Zackay and H. I. Aaronson, eds, Interscience, New York, 1962.

    Google Scholar 

  35. R. McLellan, T. Garrard, S. Horowitz, and J. Sprague:Trans. TMS-AIME, 1967, vol. 239, p. 528.

    CAS  Google Scholar 

  36. P. Gallagher, J. Lambert, and W. Oates:Trans. TMS-AIME, 1969, vol. 245, p. 887.

    CAS  Google Scholar 

  37. H. M. Lee:Met. Trans., 1974, vol. 5, p. 787.

    Article  CAS  Google Scholar 

  38. D. H. Jack and K. H. Jack:Mater. Sci. Eng., 1973, vol. 11, p. 1.

    Article  CAS  Google Scholar 

  39. N. Elliott:Phys. Rev., 1963, vol. 129, p. 1120.

    Article  CAS  Google Scholar 

  40. S. Nagakura:J. Phys. Soc. Jap., 1968, vol. 25, p. 488.

    CAS  Google Scholar 

  41. S. Nagakura and K. Tanehashi:J. Phys. Soc. Jap., 1968, vol. 25, p. 840.

    CAS  Google Scholar 

  42. S. C. Moss:Acta Met., 1967, vol. 15, p. 1815.

    Article  CAS  Google Scholar 

  43. K. H. Jack:Acta Cryst., 1952, vol. 5, p. 404.

    Article  Google Scholar 

  44. Y. Hirotsu and S. Nakagura:Acta. Met., 1972, vol. 20, p. 645.

    Article  CAS  Google Scholar 

  45. T. Shinjo, F. Itoh, H. Takaki, Y. Nakamura, and N. Shikazono:J. Phys. Soc. Jap., 1964, vol. 19, p. 1252.

    CAS  Google Scholar 

  46. W. K. Choo and R. Kaplow:Met. Trans. A, in press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

NICHOLAS DeCRISTOFARO, formerly a Graduate Student, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA

This work was sponsored by the Office of Naval Research, under Contract No. N00014-67-A-0204-0027.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeCristofaro, N., Kaplow, R. Interstitial atom configurations in stable and metastable Fe-N and Fe-C solid solutions. Metall Trans A 8, 35–44 (1977). https://doi.org/10.1007/BF02677261

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02677261

Keywords

Navigation