Skip to main content
Log in

Interpretation of high-temperature creep of type 304 stainless steel

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The elevated-temperature creep behavior of Type 304 stainless steel is examined in terms of the measured effective and internal stresses. Results show that the mean effective stress is related to the applied stress by a power law of the form σ* = α(σ)β, where the constants α and β are functions of temperature. The dependence of creep rate on applied stress follows a power law, and the stress exponent is dependent on temperature. The latter behavior arises from the variation in the mean effective stress with applied stress and temperature. The creep rates are also described as a function of effective stress. The dislocation velocity-stress exponent obtained from stresschange tests is higher than the effective stress exponent evaluated from creep data. The dependence of creep rate on temperature at various values of effective stress yields a total activation energy of approximately the same magnitude as self-diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Cottrell and V. Aytekin:J. Inst. Metals, 1950, vol. 77, pp. 389.

    CAS  Google Scholar 

  2. J. Weertman:J. Appl. Phys. 1957, vol. 28, p. 362.

    Article  CAS  Google Scholar 

  3. D. McLean:Rep. Progr. Phys., 1966, vol. 29, p. 1.

    Article  CAS  Google Scholar 

  4. S. K. Mitra and D. McLean:Metal Sci. J., 1967, vol. 1, p. 192.

    CAS  Google Scholar 

  5. R. Lagneborg:Proc. Conf. on Creep and Fracture of Metals at High Temperaturature, p. 21, M.M.S.O., 1956.

  6. P. B. Hirsch and D. H. Warrington:Phil. Mag., 1961, vol. 6, p. 735.

    Article  CAS  Google Scholar 

  7. C. R. Barrett and W. D. Nix:Acta Met., 1965, vol. 13, p. 1247.

    Article  Google Scholar 

  8. G. B. Gibbs:Phil. Mag., 1971, vol. 23, p. 771.

    Article  CAS  Google Scholar 

  9. W. D. Nix and C. R. Barrett:Trans. ASM, 1968, vol. 61, p. 695.

    Google Scholar 

  10. A. A. Solomon and W. D. Nix:Acta Met., 1970, vol. 18, p. 863.

    Article  CAS  Google Scholar 

  11. L. J. Cuddy:Met. Trans., 1970, vol. 1, p. 395.

    CAS  Google Scholar 

  12. F. Garofalo, O. Richmond, W. F. Domis, and F. Von Gemmingen:Joint International Conf. on Creep, p. 1, The Institute of Mechanical Engineers, London, 1963.

    Google Scholar 

  13. F. Garofalo, W. F. Domis and F. Von Gemmingen,Trans. TMS-AIME, 1964, vol. 230, p. 1460.

    CAS  Google Scholar 

  14. C. N. Ahlquist and W. D. Nix,Acta Met., 1971, vol. 19, p. 373.

    Article  Google Scholar 

  15. J. T. Michalak:Acta Met., 1965, vol. 13, p. 213.

    Article  CAS  Google Scholar 

  16. R. N. Stevens:Met. Rev., 1966, vol. 11, p. 129.

    Google Scholar 

  17. G. J. Lloyd and R. J. McElroy:Acta Met., 1974, vol. 22, p. 339.

    Article  CAS  Google Scholar 

  18. T. B. Gibbons, V. Lupinc, and D. McLean:Metal Sci. J., 1975, vol. 9, p. 437.

    Article  CAS  Google Scholar 

  19. J. C. M. Li:Dislocation Dynamics, A. R. Rosenfield, G. T. Hahn, A. L. Bement, and R. I. Jaffe, eds., p. 87. McGraw-Hill, New York, N.Y., 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chopra, O.K., Natesan, K. Interpretation of high-temperature creep of type 304 stainless steel. Metall Trans A 8, 633–638 (1977). https://doi.org/10.1007/BF02676986

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02676986

Keywords

Navigation