Skip to main content
Log in

The Effect of ceramic reinforcements during spray atomization and codeposition of metal matrix composites: Part II. Solid-state cooling effects

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

In the present study, the mechanisms governing the evolution of microstructure during spray atomization and codeposition of metal matrix composites (MMCs) were investigated, with particular emphasis on the effects of the ceramic phase on the resulting microstructure during solidstate cooling. The grain size refinement that is commonly observed when a distribution of ceramic particulates is coinjected into a metallic spray during spray atomization and deposition processing was rationalized in terms of three distinct effects: (a) solidification effects, (b) heattransfer effects, and (c) solid-state cooling effects. The solidification and heat-transfer effects were discussed in Part I. [1] Regarding solid-state cooling effects, the present results show that the presence of a dispersion of ceramic particulates in the aluminum matrix effectively reduces the rate of grain growth during solid-state cooling. Experimental support to this suggestion was provided by the results of an investigation on the changes in grain size following isochronal thermal anneals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gupta, F.A. Mohamed, and E.J. Lavernia:Metall. Trans. A, 1992, vol. 23A, pp. 831–43.

    CAS  Google Scholar 

  2. Yue Wu: Ph.D. dissertation research, University of California-Irvine, 1991.

  3. M. Gupta, F.A. Mohamed, and E.J. Lavernia:Mater. Manuf. Processes, 1990, vol. 5, p. 165.

    Article  CAS  Google Scholar 

  4. M. Gupta, F.A. Mohamed, and E.J. Lavernia:Proc. Int. Symp. on Advances in Processing and Characterization of Ceramic Metal Matrix Composites, H. Mostaghaci, ed., CIM/ICM, Pergamon Press, New York, NY, Aug. 1989, vol. 17, p. 236.

    Google Scholar 

  5. T.C. Willis:Met. Mater., 1988, vol. 4, p. 485.

    CAS  Google Scholar 

  6. C.L. Buhrmaster, D.E. Clark, and H.O. Smart:J. Met., 1988, vol. 40, p. 44.

    CAS  Google Scholar 

  7. A.R.E. Singer:Annals of the CIRP, 1983, vol. 32, p. 145.

    Article  Google Scholar 

  8. M. Gupta, F.A. Mohamed, and E.J. Lavernia:Conf. Proc. Symp. on Fundamental Relationships Between Microstructures and Mechanical Properties of Metal Matrix Composites, M.N. Gungor and P.K. Liaw, eds., Oct. 1–5, 1989, Indianapolis, IN, TMS Publication, Warrendale, PA, p. 3.

    Google Scholar 

  9. J. White, I.G. Palmer, I.R. Hughes, and S.A. Court: inAluminum-Lithium Alloys V, T.H. Sanders, Jr. and E.A. Starke, Jr., eds., March 27–31, 1989, Williamsburg, VA, Materials and Component Engineering Publications Ltd., vol. 3, p. 1635.

  10. K.A. Kojima, R.E. Lewis, and M.J. Kaufman: inAluminum-Lithium Alloys V, T.H. Sanders, Jr. and E.A. Starke, Jr., eds., March 27–31, 1989, Williamsburg, VA, Birmingham, U.K. vol. 1, p. 85.

  11. V.C. Nardone and K.W. Prewo:Scripta Metall., 1986, vol. 20, p. 43.

    Article  CAS  Google Scholar 

  12. K.T. Park, E.J. Lavernia, and F.A. Mohamed:Acta Metall. Mater., 1990, vol. 38, p. 2.

    Google Scholar 

  13. R.H. Bricknell:Metall. Trans. A, 1986, vol. 17A, pp. 583–91.

    CAS  Google Scholar 

  14. H.C. Fiedler, T.F. Sawyer, R.W. Koop, and A.G. Leatham:J. Met., 1987, vol. 39, p. 28.

    CAS  Google Scholar 

  15. E.J. Lavernia and N.J. Grant:Mater. Sci. Eng., 1988, vol. 98, p. 381.

    Article  CAS  Google Scholar 

  16. E.J. Lavernia and N.J. Grant:Int. J. Rapid Solidification, 1986, vol. 2, p. 93.

    CAS  Google Scholar 

  17. M. Ruhr, E.J. Lavernia, and J.C. Baram:Metall. Trans. A, 1990, vol. 21A, pp. 1785–89.

    CAS  Google Scholar 

  18. S.D. Annavarapu, D. Apelian, and A. Lawley:Metall. Trans. A, 1988, vol. 19A, pp. 3077–86.

    CAS  Google Scholar 

  19. P. Mathur, D. Apelian, and A. Lawley:Acta Metall., 1989, vol. 37, p. 429.

    Article  CAS  Google Scholar 

  20. E.J. Lavernia:Int. J. Rapid Solidification, 1989, vol. 5, p. 47.

    CAS  Google Scholar 

  21. Yue Wu and E.J. Lavernia:J. Met., 1991, vol. 43 (8), p. 16.

    CAS  Google Scholar 

  22. P.A. Beck, J.C. Kremer, L.J Demer, and M.L. Holzworth:Trans. TMS-AIME, 1948, vol. 175, p. 372.

    Google Scholar 

  23. P.A. Beck:J. Appl. Phys., 1948, vol. 19, p. 507.

    Article  CAS  Google Scholar 

  24. P.A. Beck, J. Towers, and W.O. Manley:Trans. TMS-AIME, 1951, vol. 175, p. 634.

    Google Scholar 

  25. R.L. Fullman:Metal Interfaces, ASM, Cleveland, OH, 1952, p. 179.

    Google Scholar 

  26. P. Cotterill and P.R. Mould:Recrystallization and Grain Growth in Metals, Surrey University Press, Surrey, U.K., 1976, p. 275.

    Google Scholar 

  27. E.J. Lavernia, T.S. Srivatsan, and F.A. Mohamed:J. Mater. Sci. Lett., 1990, vol. 25, p. 1137.

    CAS  Google Scholar 

  28. R.H. Bricknell:Metall. Trans. A, 1986, vol. 17A, pp. 583–91.

    CAS  Google Scholar 

  29. R.J. Arsenault:Mater. Sci. Eng., 1984, vol. 64, p. 171.

    Article  CAS  Google Scholar 

  30. M. Gupta, F.A. Mohamed, and E.J. Lavernia:J. Mater. Sci., 1992, in press.

  31. M. Ueki, M. Kana, and I. Okamoto:J. Mater. Sci. Lett., 1986, vol. 5, p. 1261.

    Article  CAS  Google Scholar 

  32. Robert E. Reed Hill:Physical Metallurgy Principles, D. Van Nostrand Company, Inc., p. 206.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, M., Mohamed, F. & Lavernia, E. The Effect of ceramic reinforcements during spray atomization and codeposition of metal matrix composites: Part II. Solid-state cooling effects. Metall Trans A 23, 845–850 (1992). https://doi.org/10.1007/BF02675561

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02675561

Keywords

Navigation