Skip to main content
Log in

Finite element calculations of the accommodation energy of a misfitting precipitate in an elastic-plastic matrix

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The elastic-plastic accommodation energy generated by the formation of a plate-shaped inclusion in an effectively infinite solid is calculated using two-dimensional (2-D) and three-dimensional (3-D) finite element techniques. A typical example of the occurrence of such an inclusion, modeled in detail in this article, is the formation of a zirconium hydride platelet in a zirconium alloy. To verify the finite element models, initial calculations were based on a linear elastic model of the inclusion and the surrounding matrix material, plus elastic-plastic solutions of an isotropically misfitting spherical inclusion expanding within an elastic/perfectly plastic, infinite solid. Good agreement with the corresponding exact analytical results was found. The finite element analysis was used to determine the accommodation energy of isotropically and anisotropically misfitting oblate spheroids contained in an elastic/perfectly plastic medium. Calculations were carried out for oblate spheroids with aspect ratios (semiminor to semimajor axes) of 0.75, 0.5, 0.25, and 0.1. In contrast to the elastic result, the elastic-plastic accommodation energy values increased with decreasing aspect ratio. This result is due to an increase in the hydrostatic component of the stress in the matrix and a consequent loss in ability to decrease the misfit stresses by plastic deformation. Three-dimensional analyses of cuboidal inclusions expanding into infinite elastic and elastic/plastic solids were also performed. The results depended on mesh density, but reasonable values could be obtained at moderate mesh densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. R.L. Beck and W.M. Mueller: inMetal Hydrides, W.M. Mueller, J.P.L. Blackledge, and G.G. Libowitz, eds., Academic Press, New York, NY, 1968, p. 312.

    Google Scholar 

  2. L.A. Simpson and M.P. Puls:Metall. Trans. A, 1979, vol. 10A, pp. 1093–1105.

    CAS  Google Scholar 

  3. J.D. Eshelby:Proc. R. Soc. London A, 1957, vol. 241, pp. 376–96.

    Article  Google Scholar 

  4. J.D. Eshelby: inSolid State Physics, F. Seitz and D. Turnbull, eds., Academic Press, New York, NY, 1966, vol. 3, pp. 89–140.

    Google Scholar 

  5. D.M. Barnett, J.K. Lee, H.I. Aaronson, and K.C. Russell:Scripta Metall., 1974, vol. 8, p. 1447.

    Article  Google Scholar 

  6. M. Shibata and K. Ono:Acta Metall., 1978, vol. 26, p. 921.

    Article  Google Scholar 

  7. G.J.C. Carpenter, J.F. Warters, and R.W. Gilbert:J. Nucl. Mater., 1973, vol. 48, p. 267.

    Article  CAS  Google Scholar 

  8. G.J.C. Carpenter and J.F. Watters:J. Nucl. Mater., 1978, vol. 73, p. 190.

    Article  CAS  Google Scholar 

  9. J.K. Lee, Y.Y. Earmme, H.I. Aaronson, and K.C. Russell:Metall. Trans. A, 1980, vol. 11A, pp. 1837–47.

    Google Scholar 

  10. M.P. Puls:Acta Metall., 1981, vol. 29, pp. 1961–81.

    Article  CAS  Google Scholar 

  11. M.P. Puls:Acta Metall., 1984, vol. 32, pp. 1259–69.

    Article  CAS  Google Scholar 

  12. M.P. Puls:J. Nucl. Mater., 1989, vol. 165, pp. 128–41.

    Article  CAS  Google Scholar 

  13. M.P. Puls:Metall. Trans. A, 1990, vol. 21A, pp. 2905–17.

    CAS  Google Scholar 

  14. G.P. Tandon and G.J. Weng:ASME J. Appl. Mech., 1986, vol. 53, p. 511.

    Article  Google Scholar 

  15. R.D. Cook:Concepts and Applications of Finite Element Analysis, 2nd ed., John Wiley & Sons, New York, NY, 1981.

    Google Scholar 

  16. G.J.C. Carpenter:J. Nucl. Mater., 1973, vol. 48, p. 264.

    Article  CAS  Google Scholar 

  17. K.G. Barraclough and C.J. Beevers:J. Mater. Sci., 1969, vol. 4, pp. 518–25.

    Article  CAS  Google Scholar 

  18. C.J. Beevers and K.G. Barraclough:J. Mater. Sci., 1969, vol. 4, pp. 802–08.

    Article  CAS  Google Scholar 

  19. M.P. Puls and J. Rabier: AECL Research, Whiteshell Laboratories, Pinawa, MB, Canada, unpublished research, 1991.

  20. G. Faivre:Phys. Status Solidi A, 1964, vol. 35, p. 249.

    Article  Google Scholar 

  21. J.K. Lee and W.C. Johnson:Phys. Status Solidi A, 1978, vol. 46, p. 267.

    Article  CAS  Google Scholar 

  22. W.C. Johnson, Y.Y. Earmme, and J.K. Lee:ASME J. Appl. Mech., 1980, vol. 47, p. 781.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leitch, B.W., Puls, M.P. Finite element calculations of the accommodation energy of a misfitting precipitate in an elastic-plastic matrix. Metall Trans A 23, 797–806 (1992). https://doi.org/10.1007/BF02675557

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02675557

Keywords

Navigation