Skip to main content
Log in

Clean steels for steam turbine rotors—their stress corrosion cracking resistance

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

This work presents the results of a comprehensive study concerning stress corrosion crack growth rates in steam turbine rotor steels exposed to hot water. The effects of stress intensity, temperature, and dissolved gases in the water have been investigated. Special attention has been given to the influence of impurities and alloying elements in the steel such as P, S, Mn, Si, Mo, and Ni, and to the effect of yield strength and fracture toughness on the growth rates of stress corrosion cracks. The results of this study clearly show that there exists a threshold stress intensity of about 20 MNm−3/2 above which the invariably intergranular stress corrosion cracks grow at a constant, stress-independent velocity. This plateau stress corrosion crack growth rate isnot affected by the oxygen and carbon dioxide concentration in the water. The temperature and the yield strength of the steel have a strong influence on the growth rate of stress corrosion cracks. In contrast, there isno effect of the steel composition within the range investigated, neither of the impurity elements such as P and S, nor of the major alloying elements such as Mn, Si, Mo, and Ni. Steels with low fracture toughness due to temper embrittlement do not exhibit faster stress corrosion crack growth rates in water than nonembrittled steels. No direct relationship between intergranular temper embrittlement and intergranular stress corrosion crack growth in water can be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. I. Jaffee:Metall. Trans. A, 1986, vol. 17A, pp. 755–75.

    CAS  Google Scholar 

  2. J. Watanabe and Y. Murakami: “Prevention of Temper Embrittlement of CrMo Steel Vessels by the Use of Low Silicon Forged Shells”, American Petroleum Institute, 1981.

  3. G. R. Prescott: “Material Problems in the Hydrocarbon Processing Industries”,Alloys for the Eighties, Climax Molybdenum Company, 1980, pp. 303–15.

  4. R. I. Jaffee, P. Machner, W. Meyer, and J. E. Steiner:Ironmaking and Steelmaking, 1986, vol. 13, pp. 322–26.

    CAS  Google Scholar 

  5. M. O. Speidel and J. E. Bertilsson: “Stress Corrosion Cracking of Steam Turbine Rotors”,Corrosion in Power Generating Equipment, M. O. Speidel and A. Atrens, eds., Plenum Press, New York, NY, 1984, pp. 331–57.

    Google Scholar 

  6. M. O. Speidel and R. M. Magdowski:Proc. 2nd Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Monterey, CA, Sept. 9–12, 1985, American Nuclear Society, La Grange Park, IL, 1986, pp. 267–75.

    Google Scholar 

  7. M. O. Speidel and R. M. Magdowski:Proc. CORROSION/86, March 17–21, 1986, Houston, TX, pp.329/1-7.

  8. M. O. Speidel:Corrosion in Power Generating Equipment, M. O. Speidel and A. Atrens, eds., Plenum Press, New York, NY, 1984, pp. 85–130.

    Google Scholar 

  9. M. O. Speidel:Blech, Rohre, Profile, 1978, Heft 1, pp. 14–18 (in German).

  10. W. G. Clark, Jr., B. B. Seth, and D. H. Shaffer: ASME, Proc. of Joint ASME/IEEE Power Generation Conference, Oct. 4–8, 1981, St. Louis, MO, Paper No. 81-JPGC.Pwr 31.

  11. J. M. Hodge and I. L. Mogford:Proc. Instn. Mech. Engrs., 1979, vol. 139, pp. 93–109.

    Google Scholar 

  12. F. F. Lyle, Jr., A. McMinn, and G. R. Leverant:Proc. Instn. Mech. Engrs., 1985, vol. 199, pp. 59–67.

    Google Scholar 

  13. A. McMinn, F. F. Lyle, Jr., and G. R. Leverant:Corrosion, 1985, vol. 41, pp. 493–503.

    CAS  Google Scholar 

  14. R. P. Wei, K. Klier, G. W. Simmons, and Y. T. Chou:Hydrogen Embrittlement and Stress Corrosion Cracking, R. Gibala and R. F. Hehemann, eds., ASM, 1984, pp. 103–33.

  15. G. W. Simmons, P. S. Pao, and R. P. Wei:Metall. Trans. A, 1978, vol. 9A, pp. 1147–58.

    CAS  Google Scholar 

  16. D. P. Williams and H. G. Nelson:Metall. Trans., 1970, vol. 1, pp. 63–68.

    CAS  Google Scholar 

  17. H. H. Johnson:Hydrogen Embrittlement and Stress Corrosion Cracking, R. Gibala and R. F. Hehemann, eds., ASM, 1984, pp. 3–27.

  18. R. P. Gangloff and R. P. Wei:Metall. Trans. A, 1977, vol. 8A, pp. 1043–53.

    CAS  Google Scholar 

  19. M. O. Speidel:Proc. Int. Conf. on Fatigue, Corrosion Cracking, Fracture Mechanics, Failure Analysis, Dec. 2–6, 1985, Salt Lake City, UT, ASM, 1986, pp. 55-.

    Google Scholar 

  20. M. O. Speidel and R. M. Magdowski:Proc. of SMIRT Post Conference Seminar, Davos, Switzerland, August 24–25, 1987, Elsevier Applied Sciences Publishers.

  21. F. P. Ford:Proc. 2nd Int. Atomic Energy Agency Specialists Meeting on Subcritical Crack Growth, W. H. Cullen, ed., Sendai, Japan, May 15–17, 1985, NUREG/CP-0067, MEA-2090, vol. 2.

  22. F. F. Lyle, Jr. and H. C. Burghard, Jr.:Materials Performance, 1982, pp. 35–44.

  23. W. Engelke, K. Schleithoff, H.A. Jestrich, and H. Termuehlen:Proc. American Power Conference, Chicago, IL, April 18–20, 1983.

  24. B. W. Bussert, R. M. Curran, and G. C. Gould: ASME,Proc. of Joint Power Generation Conference, Sept. 10–14, 1978, Dallas, TX, Paper No. 78-JPGC-Pwr 9.

  25. K. Schleithoff:Corrosion in Power Generating Equipment, M. O. Speidel and A. Atrens, eds., Plenum Press, New York, NY, 1984, pp. 361–66.

    Google Scholar 

  26. L. E. Eiselstein, R. D. Caligiuri, and C. G. Schmidt:Proc. 2nd Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Monterey, CA, Sept. 9–12, 1985, pp. 311–18.

  27. J. Kuniya, I. Masaoka, R. Rasaki, H. Itoh, and T. Okazaki:Trans. ASME Journal of Pressure Vessel Technology, 1985, vol. 107, pp. 431–35.

    Google Scholar 

  28. J. Hickling and D. Blind:Nuclear Engineering and Design, 1986, vol. 91, pp. 305–30.

    Article  CAS  Google Scholar 

  29. R. Möller, H. Erhart, and H. J. Grabke:Arch. Eisenhüttenwesen, Werkstofftechnik, 1984, vol. 55, pp. 543–48 (in German).

    Google Scholar 

  30. C. Lea:Metal Science, 1980, pp. 107–12.

  31. G. T. Burstein and J. Woodward:Metal Science, 1983, vol. 17, pp. 111–16.

    Article  CAS  Google Scholar 

  32. S. K. Banerji, C. J. McMahon, Jr., and H. C. Feng:Metall. Trans. A, 1978, vol. 9A, pp. 237–47.

    CAS  Google Scholar 

  33. N. Bandyopadhyay, J. Kameda, and C. J. McMahon, Jr.:Metall. Trans. A, 1983, vol. 14A, pp. 881–88.

    Google Scholar 

  34. B. D. Craig:Metall. Trans. A, 1982, vol. 13A, pp. 907–12.

    Google Scholar 

  35. B. D. Craig:Metall. Trans. A, 1984, vol. 15A, pp. 565–72.

    CAS  Google Scholar 

  36. J. Kameda and C. J. McMahon, Jr.:Metall. Trans. A, 1983, vol. 14A, pp. 903–11.

    Google Scholar 

  37. N. Bandyopadhyay and C. L. Briant:Metall. Trans. A, 1983, vol. 14A, pp. 2005–19.

    CAS  Google Scholar 

  38. M. Guttmann:Phil. Trans. Roy. Soc., London, A295, 1980, pp. 169–96.

    Google Scholar 

  39. J. Congleton and R. N. Parkins:Proc. CORROSION/87, 1987, pp. 105/1-14.

  40. Final Report of EPRI Research Project NP-4056, 2408–1, “Stress Corrosion Cracking in Steam Turbine Discs: Analysis of Field and Laboratory Data”, May 1985.

  41. P. J. Grobner, D. L. Sponseller, and D. E. Diesburg:Corrosion, 1979, vol. 35, pp. 240–50.

    Google Scholar 

  42. B. D. Craig:Metall. Trans. A, 1982, vol. 13A, pp. 1099–1101.

    CAS  Google Scholar 

  43. B. W. Roberts and P. Greenfield:Corrosion, 1979, vol. 35, pp. 402–09.

    CAS  Google Scholar 

  44. N. Bandyopadhyay, C. L. Briant, P. Emigh, and F. P. Ford:Micon 82: Optimization of Processing, Properties and Service Performance Through Microstructural Control, ASTM STP 792, 1982, pp. 104–20.

  45. R. P. Harrison, C. De G. Jones, and J. F. Newman:Proc. Stress corrosion cracking and hydrogen embrittlement on iron base alloys, Unieux-Firminy, France, June 12–16, 1973, NACE-5, pp. 659–62.

  46. R. Viswanathan and R. I. Jaffee:Proc. of 1st Int. Conf. on Current Solutions to Hydrogen Problems in Steels, Nov. 1–5, 1982, Washington, DC, C. G. Interrante and G. M. Pressouyre, eds.. ASM, 1982, pp. 275–78.

  47. R. Viswanathan and S. J. Hudak, Jr.:Metall. Trans. A, 1977, vol. 8A, pp. 1633–37.

    CAS  Google Scholar 

  48. P. J. Uggowitzer and R. M. Magdowski:Moderne Staehle, Reihe Ergebnisse der Werkstoff-Forschung, P. J. Uggowitzer, ed., Verlag Schweizerische Akademie der Werkstoffwissenschaften, Mai 1987, pp. 41–66.

  49. J. Degenkolbe, F.-J. Flossdorf, and W. Heller:Stahl und Eisen, 1986, vol. 13, pp. 717–21.

    Google Scholar 

  50. K. Komai, M. Higuchi, Y. Katada, M. Arii, T. Endo, and N. Nakayima:Proc. 2nd Int. Atomic Energy Agency Specialists’ Meeting on Subcritical Crack Growth, May 15–17, 1985, Sendai, Japan, NUREG/CP-0067 MEA-2090, vol. 1, pp. 69–91.

  51. C. Amzallag, J. L. Bernard, and G. Slama:Proc. Int. Symp. on Environmental Degradation of Material in Nuclear Power Systems-Water Reactors, Myrtle Beach, SC, Aug. 22–25, 1983, pp. 727–46.

  52. H. W. Liu:Trans. ASME, J. Basic Eng., 1970, vol. 92, pp. 633–38.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magdowski, R.M., Speidel, M.O. Clean steels for steam turbine rotors—their stress corrosion cracking resistance. Metall Trans A 19, 1583–1596 (1988). https://doi.org/10.1007/BF02674033

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02674033

Keywords

Navigation