Skip to main content
Log in

Effect of hot-rolling reduction on shape of sulfide inclusions and fracture toughness of AISI 4340 ultrahigh strength steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Commercial AISI 4340 ultrahigh strength steels with hot-rolling reductions of 80 to 98 pct have been studied to determine the effect of the shape of sulfide inclusions on plane-strain fracture toughness(K IC ) of the ultrahigh strength low alloy steels. The significant conclusions are as follows: decreasing the hot-rolling reduction from 98 to 80 pct for the steels modified the shape of sulfide inclusions from the stringer (average aspect ratio = 17.5) to the ellipse (average aspect ratio = 3.8). This improved theK IC in the longitudinal testing orientation by about 20 MPa · m1/2 at similar strength levels. This could be due to the fact that the ellipsed sulfide-inclusions separate from the matrix during plastic deformation, producing large voids. During testing these act to blunt and arrest cracks propagating across the specimen which would normally cause failure. The decrease in the hot-rolling reduction also developed theK IC in the transverse testing orientation by about 17 MPa · m1/2 at increased ductility and Charpy impact energy levels. This can be attributed to the fact that lamellate fracture, which occurs in a brittle manner along the interfaces of the sulfide-inclusion/matrix at the crack tip, is considerably suppressed by modifying the shape of the inclusions from the stringer to the ellipse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Y. Lai, W. E. Wood, R. A. Clark, V. F. Zackay, and E. R. Parker:Metall. Trans., 1974, vol. 5, pp. 1663–85.

    Article  CAS  Google Scholar 

  2. W. E. Wood:Eng. Fract. Mech., 1975, vol. 7, pp. 219–34.

    Article  CAS  Google Scholar 

  3. R. O. Ritchie, B. Francis, and W. L. Server:Metall. Trans. A, 1976, vol. 7A, pp. 831–38.

    CAS  Google Scholar 

  4. R. O. Ritchie and R. M. Horn:Metall. Trans. A, 1978, vol. 9A, pp. 331–41.

    CAS  Google Scholar 

  5. K. H. Khan and W. E. Wood:Metall. Trans. A, 1978, vol. 9A, pp. 889–92.

    Google Scholar 

  6. Y. Tomita:Metall. Trans. A, 1987, vol. 8A, pp. 1495–1501.

    Google Scholar 

  7. W. C. Leslie:Trans. Iron Steel Soc., 1983, vol. 2, pp. 1–24.

    CAS  Google Scholar 

  8. J. H. Tweed and J. F. Knott:Met. Sci., 1983, vol. 17, pp. 45–54.

    Article  Google Scholar 

  9. D. E. McRobie and D. E. Knott:Mater. Sci. Technol., 1985, vol. 1, pp. 357–65.

    CAS  Google Scholar 

  10. G. R. Speich and W. A. Spitzig:Metall. Trans. A, 1982, vol. 13A, pp. 2239–58.

    Google Scholar 

  11. T. B. Cox and J. R. Low, Jr.:Metall. Trans., 1974, vol. 5, pp. 1457–70.

    Article  CAS  Google Scholar 

  12. F. B. Pickering: “Toward Improved Ductility and Toughness”, Climax Molybdenum Development Company LTd., Japan, 1971, pp. 9–31.

    Google Scholar 

  13. Annual Book of ASTM Standards, American Society for Testing and Materials, ASTM Standards E23-72, Philadelphia, PA, 1972.

  14. J. E. Hilliard and J. W. Cahn:Trans. AIME, 1961, vol. 221, pp. 344–52.

    CAS  Google Scholar 

  15. Y. Tomita and K. Okabayashi:Metall. Trans. A, 1986, vol. 17A, pp. 1203–09.

    CAS  Google Scholar 

  16. J. Durnin and K. A. Ridai:J. Iron and Steel Inst., 1968, vol. 206, pp. 60–67.

    CAS  Google Scholar 

  17. K. Okabayashi, Y. Tomita, and I. Kuroki:Tetsu-to-Hagané, 1976, vol. 62, pp. 662–69.

    Google Scholar 

  18. Y. Tomita:Metall. Trans. A, in press.

  19. E. R. Parker and V. F. Zackay:Eng. Fract. Mech., 1975, vol. 7, pp. 371–75.

    Article  CAS  Google Scholar 

  20. M. Sarikaya, B. G. Steinberg, and G. Thomas:Metall. Trans. A, 1982, vol. 13A, pp. 2227–37.

    Google Scholar 

  21. V. F. Zackay, E. S. Parker, and W. E. Wood:Proc. of 3rd Int. Conf. on Strength of Metals and Alloys, Inst. of Metals and the Iron and Steel Institute, London;The Microstructure and Design of Alloys, 1973, vol. 1, pp. 175–79.

  22. J. McMahone and G. Thomas:Proc. of 3rd Int. Conf. on Strength of Metals and Alloys, Inst. of Metals and the Iron and Steel Institute, London;The Microstructure and Design of Alloys, 1973, vol. 1, pp. 180–84.

  23. M. F. Carlson, B. V. Narasimha, and G. Thomas:Metall. Trans. A, 1979, vol. 10A, pp. 1273–84.

    CAS  Google Scholar 

  24. S. Lee, L. Majno, and R. J. Asaro:Metall. Trans. A, 1985, vol. 16A, pp. 1633–48.

    CAS  Google Scholar 

  25. C. T. Forward and A. J. Forty:Phil. Mag., 1965, vol. 11, pp. 1067–82.

    Article  Google Scholar 

  26. A. Gilbert, J. L. Ratliff, and W. R. Warke:Trans. ASM, 1965, vol. 58, pp. 142–49.

    CAS  Google Scholar 

  27. T. J. Johnston, R. J. Stokes, and C. H. Li:Trans TMS-AIME, 1961, vol. 221, pp. 792–802.

    CAS  Google Scholar 

  28. A. S. Tetelman and C. A. Rau, Jr:Proc. of the Ist Int. Conf. on Fracture, Sendai, Japan, 1965, vol. B-I, pp. 691–709.

    Google Scholar 

  29. T. J. Baker, F. P. L. Kavishe, and J. Wilson:Mater. Sci. Technol., 1986, vol. 2, pp. 576–82.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomita, Y. Effect of hot-rolling reduction on shape of sulfide inclusions and fracture toughness of AISI 4340 ultrahigh strength steel. Metall Trans A 19, 1555–1561 (1988). https://doi.org/10.1007/BF02674029

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02674029

Keywords

Navigation