Skip to main content
Log in

The prediction of precipitation strengthening in microalloyed steels

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effectiveness of interphase precipitation strengthening in microalloyed steels depends on the temperature dependence of the solubility of the precipitation phase in austenite and on the temperature utilized in soaking. Using an approximate method of calculating the solubility of microalloying elements in the presence of both carbon and nitrogen, a precipitation strengthening potential parameter was developed. On relating this parameter to the chemical compositions and thermal histories of microalloyed steels, it was determined that the interphase precipitation strengthening determined in this and other studies increases linearly with the strengthening potential parameter. On the basis of the linear dependence of precipitation strengthening on the precipitation potential and other observations, it appears that interphase precipitation strengthening is not due to the Orowan looping mechanism but rather to interactions of gliding dislocations with the strain fields of coherent precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

(C):

solubility of carbon in austenite (wt pct)

C T :

total carbon content (wt pct)

d :

mean linear intercept grain diameter (mm)

f a :

volume fraction of ferrite

G :

shear modulus (MPa)

KMC :

solubility product for MC carbide in austenite

KMN :

solubility product for MN nitride in austenite

KLC :

solubility product for LC carbide in austenite

(L):

solubility of microalloying element L in austenite (wt pct)

L T :

total microalloying element L (wt pct)

LC:

weight fraction of LC carbide in the steel

(M):

solubility of microalloying element M in austenite (wt pct)

MT :

total microalloying element M (wt pct)

MC:

weight fraction of MC carbide in the steel

MN:

weight fraction of MN nitride in the steel

(N):

solubility of nitrogen in austenite (wt pct)

NT :

total nitrogen content (wt pct)

P ppt :

precipitation potential (wt pct)

S p :

true pearlite interlamellar spacing, mm

σ ys :

yield strength with no precipitation as calculated with Gladman’s equation (MPa)

Δσys :

increase in yield strength due to precipitation (MPa)

ZL :

atomic weight of microalloying element L

ZM :

atomic weight of microalloying element M

References

  1. J. D. Baird and R. R. Preston:Processing and Properties of Low Carbon Steels, TMS-AIME, 1973, p. 1.

  2. T. Gladman, David Dulieu, and Ian D. McIvor:Microalloying 75,Proceedings, Union Carbide Corp., 1977, p. 32.

  3. Morris Cohen and Walter S. Owen:Microalloying 75, Proceedings, Union Carbide Corp., 1977, p. 2.

  4. S. Matsuda and N. Okumura:Trans. ISIJ, 1978, vol. 18, p. 198.

    CAS  Google Scholar 

  5. M. Korchynsky and H. Stuart: Symposium;Low Alloy High Strength Steel, Nuremburg, 1970, p. 17.

  6. M. J. Crooks, A. J. Garratt-Reed, J. B. Vander Sande, and W. S. Owen:Metall. Trans. A, 1980, vol. 11A, p. 597.

    Google Scholar 

  7. J. M. Gray and R. B. S. Yeo:Trans. ASM, 1968, vol. 61, p. 255.

    CAS  Google Scholar 

  8. R. W. K. Honeycombe:Metall. Trans. A, 1976, vol. 7A, p. 915.

    CAS  Google Scholar 

  9. A. T. Davenport, F. G. Berry, and R. W. K. Honeycombe:Met. Sci. J., 1968, vol. 2, p. 104.

    Article  CAS  Google Scholar 

  10. K. J. Irvine, F. B. Pickering, and T. Gladman:JISI, 1975, vol. 15, p. 145.

    Google Scholar 

  11. M. Hillert and L. I. Staffansson:Acta Chem. Scand., 1970, vol. 24, p. 3618.

    Article  CAS  Google Scholar 

  12. B. Uhrenius: Rep. Royal Inst. Technology, TRITA-MAC-0127, Stockholm, 1977.

  13. B. Uhrenius and H. Hartvig:Metal Science, 1975, vol. 9, p. 67.

    Article  CAS  Google Scholar 

  14. B. Uhrenius:Scand. J. Met., 1977, vol. 6, p. 83.

    CAS  Google Scholar 

  15. B. Uhrenius: Rep. Royal Inst. Technology, TRITA-MAC-0130, Stockholm, 1977.

  16. K. Narita:Trans. IS1J, 1975, vol. 15, p. 145.

    CAS  Google Scholar 

  17. V. K. Lakshmanan and J. S. Kirkaldy:Metall. Trans. A, 1984, vol. 15A, p. 541.

    CAS  Google Scholar 

  18. H. Chino and K. Wada:Yawata Tech. Report, 1965, vol. 251, p. 75.

    Google Scholar 

  19. R. C. Hudd, A. Jones, and M. N. Kale:JISI, 1971, vol. 209, p. 121.

    CAS  Google Scholar 

  20. W. Roberts and A. Sandberg:The Compositions of V(C.N) as Precipitated in HSLA Steels Microalloyed with V, Swedish Institute for Metals, Research Report Series, 1980.

  21. T. Gladman, I. D. Mclvor, and F. B. Pickering:JISI, 1972, vol. 210, p. 916.

    CAS  Google Scholar 

  22. G. Birbeck and T. C. Wells:Trans. AIME, 1968, vol. 242, p. 2217.

    Google Scholar 

  23. T. Gladman and J. H. Woodhead:JISI, 1960, vol. 194, p. 189.

    Google Scholar 

  24. H. Brandis, E. Schmidtmann, A. v. d. Steinen, and S. Engineer:Thyssen Edelst, Techn. Ber 4 Band, 1978, p. 3.

    CAS  Google Scholar 

  25. A. v. d. Steinen, S. Engineer, E. Horn, and G. Preis:Stahl u. Eisen, 1975, vol. 95, p. 209.

    Google Scholar 

  26. T. Gladman, B. Holmes, and I. D. McIvor:The Effects of Second Phase Particles on the Mechanical Properties of Steel, The Iron and Steel Institute, 1971, p. 68.

  27. R. K. Amin, M. Korchynsky, and F. B. Pickering:Metal Technology, 1981, vol. 8, p. 250.

    CAS  Google Scholar 

  28. M. F. Ashby:Oxide Dispersion Strengthening, Proc. 2nd Bolton Landing Conf., G.S. Ansell, ed., Gordon and Breach, New York, NY, 1968, p. 143.

    Google Scholar 

  29. A. J. Lapointe and T. N. Baker:Met. Sci. J., 1982, vol. 16, p. 209.

    Article  Google Scholar 

  30. Yu I. Matrosov and A. N. Sorokin:Met. Sci. and Heat Treatments, 1981, vol. 23, p. 314.

    Article  Google Scholar 

  31. A. D. Batte and R. W. K. Honeycombe:Met. Sci. J., 1973, vol. 7, p. 160.

    Article  CAS  Google Scholar 

  32. A. D. Batte and R. W. K. Honeycombe:JISI, 1973, vol. 211, p. 284.

    CAS  Google Scholar 

  33. R. G. Baker and J. Nutting: ISI Special Report No. 64, 1959, p. 1.

  34. V. Gerald and H. Haberkorn:Phys. Stat. Sol., 1966, vol. 16, p. 675.

    Article  Google Scholar 

  35. H. Gleiter:Z. Angew Phys., 1967, vol. 23, p. 108.

    CAS  Google Scholar 

  36. H. Gleiter:Acta Metall., 1968, vol. 16, p. 89.

    Article  Google Scholar 

  37. O. Kammori, I. Taguchi, K. Suzuki, and A. Ono:J. Inst. Metals of Japan, 1968, vol. 32, p. 1185.

    CAS  Google Scholar 

  38. J. M. Gray, D. Webster, and J. H. Woodhead:JISI, 1965, vol. 203, p. 812.

    CAS  Google Scholar 

  39. W. B. Morrison:JISI, 1963, vol. 201, p. 317.

    CAS  Google Scholar 

  40. L. A. Erasmus and L. N. Pussegoda:Metall. Trans. A, 1980, vol. 11 A, p. 231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, H.R., Hendrickson, A.A. The prediction of precipitation strengthening in microalloyed steels. Metall Trans A 19, 1471–1480 (1988). https://doi.org/10.1007/BF02674021

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02674021

Keywords

Navigation