Skip to main content
Log in

Theory of workhardening 1934-1984

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The evolution of the theory of workhardening through the past fifty years has laid a secure basis, but much research still lies ahead. A guiding principle in the prevailing, so-called meshlength theory is that glide dislocations arrange into stress-screened, low-energy structures, the most common being the cell structure, and that the flow stress is the stress needed to generate new glide dislocations. Further, it makes extensive use of the “principle of similitude”. Remnant stresses due to dislocations with just one Burgers vector orientation are very often relieved by additional dislocations with other Burgers vectors which form not in response to the applied stress but to those remnant stresses. Such dislocations are commonly misnamed “forest” dislocations. The theory closely reproduces stages II and III of the typical workhardening curve. Stage I results in single glide from sources which initially are isolated from each other so that pile-ups form, which then may interact among neighboring pile-ups of opposite sign, so as to generate mats of dipoles parallel to the active glide plane. Stage II behavior is expected as long as similitude is obeyed so that the average free dislocation path shrinks inversely proportional with the root of the dislocation density. Stage III, finally, results when the free dislocation path is constant. At low temperatures, thermal activation can make the critical difference for the release of hair-trigger poised loops. This is the cause of creep effects whose magnitude is limited to less than the elastic strain. Computer calculations indicate the presence of longer-range (i.e., cell diameter scale) stresses whose sign changes with the cell’s sense of rotation. This suggests that rectangled dislocation cells with a common rotation axis, arranged into a three-dimensional checkerboard pattern in which the sense of rotation alternates from cell to cell, should minimize stored energy. Such cell patterns are increasingly reported in the literature. The fact that the average cell diameter tends to be inversely proportional to the applied stress is also readily explained through those stresses. In retrospect, Taylor’s theory of workhardening may be recognized as a variant of the meshlength theory of stage III, in that it is based on a stress-screened network obeying the principle of similitude while the free dislocation path, given by the spacing between the mosaic block walls, remains constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Orowan:Z. Physik, 1934, vol. 89, p. 605.

    Google Scholar 

  2. E. Orowan:Z. Physik, 1934, vol. 89, p. 614.

    Google Scholar 

  3. E. Orowan:Z. Physik, 1934, vol. 89, p. 634.

    Google Scholar 

  4. E. Orowan:Z. Physik, 1935, vol. 97, p. 573.

    CAS  Google Scholar 

  5. E. Orowan:Z. Physik, 1935/6, vol. 98, p. 382.

    CAS  Google Scholar 

  6. M. Polanyi:Z. Physik, 1934, vol. 89, p. 660.

    CAS  Google Scholar 

  7. G. I. Taylor:Proc. Roy. Soc. 1934, vol. A145, p. 362.

    CAS  Google Scholar 

  8. R. Becker:Physikal. Zeits., 1925, vol. 26, p. 919.

    CAS  Google Scholar 

  9. R. Becker:Zeits. f. techn. Physik, 1926, vol. 7, p. 547.

    CAS  Google Scholar 

  10. R. Becker and W. Boas:Metallwirtschaft, 1929, vol. 8, p. 317.

    Google Scholar 

  11. L. Prandtl:Zeits. angew. Math. u. Mechanik, 1928, vol. 8, p. 85.

    Google Scholar 

  12. U. Dehlinger:Ann. d. Physik, 1929, vol. 2, p. 749.

    CAS  Google Scholar 

  13. G. Masing and M. Polanyi:Ergebn. exakt. Naturw., 1923, vol. 2, p. 177.

    Google Scholar 

  14. A. E. H. Love: A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, 1927 app. to chpts. VIII and IX.

  15. W. G. Burgers and J.M. Burgers:Proc. Acad. Sci. Amsterdam, 1935, vol. 15, no. 3.

  16. W. G. Burgers: “Plastizität der Kristalle,” inElastizitäk, Plastizität und Stuktur der Materie, R. Houwink, Akad. Verlagsges, Leipzig, 1938.

    Google Scholar 

  17. W. G. Burgers: “Rekristallisation, verformter Zustand und Erholung” inHandbuch der Metallphysik, G. Masing, Akad. Verlagsges, Leipzig, 1941, vol. 3/2.

    Google Scholar 

  18. U. Dehlinger:Chemische Physik der Metalle und Legierungen, Akad. Verlagsges, Leipzig, 1939, p. 152.

    Google Scholar 

  19. A. Kochendörfer:Z. Kristallographie, 1937, vol. 97, p. 263.

    Google Scholar 

  20. A. Kochendörfer:Plastische Eigenschaften von Kristallen und metallischen Werkstoffen, Springer, Berlin, 1941.

    Google Scholar 

  21. E. Schmid and W. Boas:Plasticity of Crystals, trans, of Kristallplastizität mit besonderer Berücksichtigung der Metalle, 1935, F. A. Hughes & Co., London, 1950.

    Google Scholar 

  22. C. F. Elam:Distortion of Metal Crystals, Clarendon Press, Oxford, 1935.

    Google Scholar 

  23. J.M. Burgers:Proc. Acad. Sci. Amsterdam, 1939, vol. 42, pp. 293, 378.

    Google Scholar 

  24. D. Kuhlmann and G. Masing:Z. Metallkunde, 1948, vol. 39, p. 361.

    Google Scholar 

  25. D. Kuhlmann, G. Masing, and I. Raffelsieper:Z. Metallkunde, 1949, vol. 40, p. 241; see also G. Masing and J. Raffelsieper: Z. Metallkunde, 1950, vol. 41, p. 65.

    CAS  Google Scholar 

  26. N. F. Mott and F. R.N. Nabarro:Proc. Phys. Soc., 1940, vol. 52, p. 86.

    CAS  Google Scholar 

  27. N. F. Mott:J. Inst. Metals (London), 1946, vol. 72, p. 367.

    CAS  Google Scholar 

  28. P. Haasen:Physical Metallurgy, Cambridge University Press, Cambridge/London, 1978, trl.of Physikalische Metallkunde, Springer Berlin, 1974.

  29. Constitutive Equations in Plasticity, A. S. Argon, ed., MIT Press, Cambridge, MA, 1975.

  30. U. F. Kocks, A.S. Argon, and M.F. Ashby.Thermodynamics and Kinetics of Slip, Pergamon Press, New York, NY, 1975.

    Google Scholar 

  31. F. R. N. Nabarro, Z. S. Basinski, and D.B. Holt:Advances in Physics, 1964, vol. 13, p. 193.

    CAS  Google Scholar 

  32. Z. S. Basinski:Phil. Mag., 1959, vol. 4, p. 393.

    CAS  Google Scholar 

  33. S.J. Basinski and Z. S. Basinski:Dislocations in Solids, F.R.N. Nabarro, ed., North-Holland Publ. Co, Amsterdam, 1979, vol. 4, pp. 261–362.

    Google Scholar 

  34. F. R. N. Nabarro:1947 Bristol Conference on the Strength of Solids, The Physical Society, London, 1948, p. 38.

    Google Scholar 

  35. E. N. da C. Andrade:Proc. Roy. Soc., 1910, vol. A84, p. 1; 1914, vol. A90, p. 329.

    Google Scholar 

  36. M. Kornfeld:Phys. Z. Sowjet Union, 1936, vol. 10, p. 605.

    CAS  Google Scholar 

  37. L. Boltzmann:Sitzungsber. Akad. Wien (2)1874, vol. 70, pp. 70, 275; Poggendorfs Ann. (Erg. Bd.), 1876, vol. 8, p. 624.

    Google Scholar 

  38. E. Wiechert:Ann., 1893, vol. 50, p. 335, 546.

    Google Scholar 

  39. E.v. Schweidler:Ann., 1907, vol. 24, p. 711.

    Google Scholar 

  40. W. Wagner:Ann., 1913, vol. 40, p. 817.

    Google Scholar 

  41. R. Becker:Z. Physik, 1925, vol. 33, p. 185.

    CAS  Google Scholar 

  42. D. Kuhlmann:Z. Physik, 1947, vol. 124, p. 468.

    Google Scholar 

  43. N.F. Mott and F.R.N. Nabarro:1947 Bristol Conference on the Strength of Solids, The Physical Society, London, 1948, p. 11.

    Google Scholar 

  44. E. Orowan:J. West of Scotland Iron and Steel Institute, 1946-7, vol. 54, p. 45.

    Google Scholar 

  45. F.R.N. Nabarro:Z. Metallkunde, 1949, vol. 40, p. 81.

    CAS  Google Scholar 

  46. F. Sitz and T.A. Read:J. Appl. Phys., 1941, vol. 12, pp. 100,170, 471, and 538.

    Google Scholar 

  47. J.S. Koehler:Phys. Rev., 1941, vol. 60, p. 397.

    CAS  Google Scholar 

  48. R. Maddin, C. H. Mathewson, and W. R. Hibbard:Trans. AIME, 1948, vol. 175, p. 86.

    Google Scholar 

  49. R. Maddin, C.H. Mathewson, and W. R. Hibbard:Metals Trans., 1949, vol. 185, p. 527.

    Google Scholar 

  50. C.L. Smith:Proc. Phys. Soc., 1948, vol. 61, p. 201.

    CAS  Google Scholar 

  51. F. C. Frank:The Strength of Solids, Physical Soc., London, 1948, p. 46. *

    Google Scholar 

  52. D. Kuhlmann:Proc. Phys. Soc., 1951, vol. A64, p. 140.

    Google Scholar 

  53. F.C. Frank and W.T. Read:Phys. Rev., 1950, vol. 79, p. 722.

    CAS  Google Scholar 

  54. P.A. Jacquet:Acta Metall., 1954, vol. 2, p. 752.

    CAS  Google Scholar 

  55. B. A. Bilby and A. R. Entwistle:Acta Metall., 1956, vol. 4, p. 257.

    CAS  Google Scholar 

  56. J. J. Gilman:Trans. AIME, 1956, vol. 8, p. 998.

    CAS  Google Scholar 

  57. J.D. Meakin and H.G.F. Wilsdorf:Trans. AIME, 1960, vol. 218, p. 745.

    CAS  Google Scholar 

  58. G. Leibfried:Z. Physik, 1951, vol. 130, p. 124; ZS. angew. Physik, m 1954, vol. 6, p. 251; see also G. Leibfried and P. Haasen: Nachr. Akad. Wiss., Göttingen, Math. Phys. Kl., 1954, p. 31.

    Google Scholar 

  59. J.D. Eshelby, F.C. Frank, and F.R.N. Nabarro:Phil. Mag., 1951, vol. 42, p. 351.

    Google Scholar 

  60. D. Kuhlmann-Wilsdorf, J.H. van der Merwe, and H.G.F. Wilsdorf:Phil. Mag., 1952, vol. 43, p. 632.

    Google Scholar 

  61. N.F. Mott:Phil. Mag., 1952, vol. 43, p. 1151.

    Google Scholar 

  62. N.F. Mott:Phil. Mag., 1953, vol. 44, p. 741.

    Google Scholar 

  63. N. F. Mott:Trans. Met. Soc. AIME, 1960, vol. 218, p. 218.

    Google Scholar 

  64. A. Seeger, J. Diehl, S. Mader, and H. Rebstock:Phil. Mag., 1957, vol. 2, p. 323.

    CAS  Google Scholar 

  65. A. Seeger: inDislocations and Mechanical Properties of Crystals, J.C. Fisher, W.G. Johnston, R. Thomson, and T. Vreeland, eds., John Wiley, New York, NY, 1957, p. 243.

    Google Scholar 

  66. A. Seeger:Handbuch der Physik, S. Flügge, ed., Springer, Berlin, 1958, vol. VII/2, p. 1. y

    Google Scholar 

  67. P.B. Hirsch:Relationship Between Structure and Mechanical Properties of Metals, H. M. Stationery Office, London, 1963, p. 39.

    Google Scholar 

  68. P. B. Hirsch:Disc. Faraday Soc., 1964, vol. 38, p. 111.

    Google Scholar 

  69. P. B. Hirsch and T. E. Mitchell:Work Hardening, J. P. Hirth and J. Weertman, eds., Gordon and Breach, New York, NY, 1968, p. 65.

    Google Scholar 

  70. P.B. Hirsch and T. E. Mitchell:Can. J. Phys., 1967, vol. 45, p. 663.

    CAS  Google Scholar 

  71. W. A. Jesser and D. Kuhlmann-Wilsdorf:Mat. Sci. Eng., 1981, vol. 51, p. 31.

    CAS  Google Scholar 

  72. W. Bollmann:Phys. Rev., 1956, vol. 103, p. 1588.

    CAS  Google Scholar 

  73. P.B. Hirsch, R.W. Home, and M.J. Whelan:Phil. Mag., 1956, vol. l,p. 677.

    Google Scholar 

  74. R.D. Heidenreich:J. Appl. Phys., 1949, vol. 20, p. 993.

    CAS  Google Scholar 

  75. F. C. Frank:Disc. Faraday, Soc., 1949, vol. 5, p. 48.

    Google Scholar 

  76. W. K. Burton, N. Cabrera, and F. C. Frank:Phil. Trans. Roy. Soc., 1951, vol. A243, p. 299.

    CAS  Google Scholar 

  77. A. R. Verma:Crystal Growth and Dislocations, Butterworths, London, 1973.

    Google Scholar 

  78. S. Amelinckx:The Direct Observation of Dislocations, Academic Press, New York/London, 1964.

    Google Scholar 

  79. J. M. Hedges and J.W. Mitchell:Phil. Mag., 1953, vol. 44, pp. 223, 357.

    CAS  Google Scholar 

  80. P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan:Electron Microscopy of Thin Crystals, Plenum Press, New York, NY-Butterworths, London, 1965.

    Google Scholar 

  81. H.G.F. Wilsdorf and J. Schmitz:J. Appl. Phys., 1962, vol. 33, p. 1750.

    CAS  Google Scholar 

  82. H.G.F. Wilsdorf, and D. Kuhlmann-Wilsdorf:Phys. Rev. Lett., 1959, vol. 3, p. 170.

    CAS  Google Scholar 

  83. D. Kuhlmann-Wilsdorf, R. Maddin, and H.G.F. Wilsdorf:Strengthening Mechanisms in Solids, J.J. Harwood, ed., ASM, Metals Park, OH, 1962, p. 137.

    Google Scholar 

  84. D. Kuhlmann-Wilsdorf and H.G.F. Wilsdorf:Acta Metall., 1962, vol. 10, p. 584.

    CAS  Google Scholar 

  85. H.G.F. Wilsdorf and D. Kuhlmann-Wilsdorf:J. Nuclear Math., 1962, vol. 5, p. 178.

    Google Scholar 

  86. D. Kuhlmann-Wilsdorf and H. G. F. Wilsdorf:Electron Microscopy and Strength of Crystals, G. Thomas and J. Washbum, eds., Interscience Publ., John Wiley, New York, NY, 1963, p. 575.

    Google Scholar 

  87. K. Sezaki and D. Kuhlmann-Wilsdorf:Acta Metall, 1966, vol. 14, p. 1131.

    CAS  Google Scholar 

  88. R. Maddin and A. H. Cottrell:Phil. Mag., 1955, vol. 46, p. 735.

    CAS  Google Scholar 

  89. H. Kimura, R. Maddin, and D. Kuhlmann-Wilsdorf:Acta Metall., 1959, vol. 7, p. 154.

    Google Scholar 

  90. A. H. Cottrell:Vacancies and Other Point Defects in Metals and Alloys, Inst. of Metals Monograph #23, London, 1958, p. 1.

    Google Scholar 

  91. H. Kimura and R. Maddin:Quench Hardening in Metals, NorthHolland Publishing Co., Amsterdam/London, 1971.

    Google Scholar 

  92. J.E. Bauerle and J. S. Koehler:Phys. Rev., 1957, vol. 107, p. 1493.

    CAS  Google Scholar 

  93. J.S. Koehler, F. Seitz, and J. E. Bauerle:Phys. Rev., 1957, vol. 107, p. 1499.

    CAS  Google Scholar 

  94. D. Kuhlmann-Wilsdorf:Phil. Mag., 1958, vol. 3, p. 125.

    CAS  Google Scholar 

  95. D. Kuhlmann-Wilsdorf, R. Maddin, and H. Kimura:Z. Metallkunde, 1958, vol. 49, p. 584.

    CAS  Google Scholar 

  96. H. Kimura, R. Maddin, and D. Kuhlmann-Wilsdorf:Acta Metall., 1959, vol. 7, p. 145.

    CAS  Google Scholar 

  97. F. Seitz:Phys. Rev., 1950, vol. 79, pp. 723, 890, and 1002.

    CAS  Google Scholar 

  98. Lattice Defects in Quenched Metals, R. M. J. Cotterill, M. Doyama, J. J. Jackson, and M. Meshii, eds., Academic Press, New York, NY, 1965.

  99. I.G. Greenfield and H.G.F. Wilsdorf:Naturwiss., 1960, vol. 47, p. 395.

    CAS  Google Scholar 

  100. K. Sezaki and D. Kuhlmann-Wilsdorf:Acta Metall., 1966, vol. 14, p. 1131.

    CAS  Google Scholar 

  101. T. J. Koppenaal and D. Kuhlmann-Wilsdorf: Appl. Phys. Letters, 1964, vol. 4.

  102. N.F. Mott:Proc. Phys. Soc., 1951, vol. B64 (2), p. 729.

    Google Scholar 

  103. W.T. Read:Dislocations in Crystals, McGraw-Hill, New York, NY, 1953.

    Google Scholar 

  104. A. H. Cottrell:Dislocations and Plastic Flow in Crystals, Clarendon Press, Oxford, 1953.

    Google Scholar 

  105. D. Kuhlmann-Wilsdorf:Trans. Met. Soc. AIME, 1962, vol. 224, p. 1047.

    CAS  Google Scholar 

  106. D. Kuhlmann-Wilsdorf, H. J. Levinstein, W. H. Robinson, and H.G.F. Wilsdorf:J. Aust. Inst. Met., 1963, vol. 8, p. 102.

    CAS  Google Scholar 

  107. D. Kuhlmann-Wilsdorf: inWork Hardening, J. P. Hirth and J. Weertman, eds., Gordon and Breach, New York, NY, 1968, p. 97.

    Google Scholar 

  108. D. Kuhlmann-Wilsdorf:Metall. Trans., 1970, vol. 1, p. 3173.

    Google Scholar 

  109. D. Kuhlmann-Wilsdorf: in Workhardening in Tension and Fatigue, A.W. Thompson, ed., AIME, 1977, p. 1.

  110. L.E. Murr and D. Kuhlmann-Wilsdorf:Acta Metall., 1978, vol. 26, p. 847.

    CAS  Google Scholar 

  111. D. Kuhlmann-Wilsdorf and J.H. van der Merwe:Matls. Sci.Engg., 1982, vol. 55, p. 79.

    Google Scholar 

  112. D. Kuhlmann-Wilsdorf and N. Comins:Matls. Sci. Engg., 1983, vol. 60, p. 7.

    CAS  Google Scholar 

  113. J.S. Koehler:Phys. Rev., 1952, vol. 86, p. 52.

    CAS  Google Scholar 

  114. P. Haasen and G. Leibfried:Z. Physik, 1952, vol. 131, p. 538.

    Google Scholar 

  115. P. Haasen:Z. Physik, 1953, vol. 136, p. 26.

    CAS  Google Scholar 

  116. P. Haasen and G. Leibfried:Z. Metallkunde, 1952, vol. 43, p. 317.

    CAS  Google Scholar 

  117. P. Haasen:Phil. Mag., 1958, vol. 3, p. 384.

    CAS  Google Scholar 

  118. P. Haasen and A. Seeger: inHalbleiterprobleme IV, W. Schottky, ed., Vieweg and Son, Braunschweig, 1958, p. 68.

    Google Scholar 

  119. W. der Schmitten and P. Haasen:J. Appl. Phys., 1961, vol. 32, p. 1790.

    CAS  Google Scholar 

  120. K. Lücke and H. Lange:Z. Metallkunde, 1952, vol. 43, p. 55.

    Google Scholar 

  121. J. Friedel:Dislocations, Gauthier-Villars, Paris, 1956.

    Google Scholar 

  122. J. Friedel:Phil. Mag., 1955, vol. 46, p. 1169.

    CAS  Google Scholar 

  123. J. Friedel and G. Saada: inWork Hardening, J. P. Hirth and J. Weertman, eds., Gordon and Breach, New York, NY, 1968, p. 1.

    Google Scholar 

  124. C.W. MacGregor and L. E. Welch:Trans. AIME, 1943, vol. 154, p. 423.

    Google Scholar 

  125. A.H. Cottrell and R. J. Stokes:Proc. Roy. Soc., 1955, vol. A233, p. 17.

    CAS  Google Scholar 

  126. K.R. Evans and W.F. Flanagan:phys. stat. sol., 1967, vol. 22, p. 195.

    CAS  Google Scholar 

  127. K. R. Evans and W. F. Flanagan:Phil. Mag., 1968, vol. 17, p. 535.

    CAS  Google Scholar 

  128. K. R. Evans, D. J. Bailey, and W. F. Flanagan:phys. stat. sol., 1967, vol. 22, p. 607.

    CAS  Google Scholar 

  129. P. B. Hirsch and D.H. Warrington:Phil. Mag., 1961, vol. 6, p. 735.

    CAS  Google Scholar 

  130. W.M. Lomer:Phil. Mag., 1951, vol. 42, p. 1327.

    CAS  Google Scholar 

  131. A.H. Cottrell:Phil. Mag., 1952, vol. 43, p. 645.

    Google Scholar 

  132. P. J. Jackson and D. Kuhlmann-Wilsdorf:Scripta Met., 1982, vol. 16, p. 105.

    CAS  Google Scholar 

  133. A. Seeger: inWork Hardening, J.P. Hirth and J. Weertman, eds., Gordon and Breach, New York, NY, 1968, p. 27.

    Google Scholar 

  134. Work Hardening, J.P. Hirth and J. Weertman eds., Gordon and Breach, New York, NY, 1968.

  135. U. F. Kocks, A. S. Argon, and M. F. Ashby:Thermodynamics and Kinetics of Slip, Pergamon Press, New York, NY, 1975.

    Google Scholar 

  136. U. F. Kocks, H. S. Chen, D. A. Rigney, and R. J. Schaefer: inWork Hardening, J. P. Hirth and J. Weertman, eds., Gordon and Breach, New York, NY, 1968, p. 151.

    Google Scholar 

  137. J. G. Sevillano, P. van Houtte, and E. Aernoudt:Prog. Mater. Sci., 1980, vol. 25, p. 164.

    Google Scholar 

  138. J.F. Bell:Phil. Mag., 1964, vol. 10, pp. 10, 107; 1965, vol. 11, p. 1135.

    Google Scholar 

  139. T. E. Mitchell and R. L. Smialek: inWork Hardening, J. P. Hirthand J. Weertman, eds., Gordon and Breach, New York, NY, 1968, p. 365.

    Google Scholar 

  140. S. Mader, A. Seeger, and C. Leitz:J. Appl. Phys., 1963, vol. 34, p. 3368.

    CAS  Google Scholar 

  141. G. Langford and M. Cohen:Trans. ASM, 1969, vol. 62, p. 623.

    CAS  Google Scholar 

  142. H. J. Rack and M. Cohen:Mat. Sci. Engg., 1970, vol. 6, p. 320.

    CAS  Google Scholar 

  143. J.T. Moore and D. Kuhlmann-Wilsdorf:J. Appl. Phys., 1970, vol. 41, p. 4411; 1971, vol. 42, pp. 953, 3717, and 3726.

    Google Scholar 

  144. J.T. Moore and D. Kuhlmann-Wilsdorf: inGrainboundaries and Interfaces, P. Chaudhari and J.W. Matthews, eds., North Holland Publishing Co., Amsterdam/New York, 1972. See also Surface Science, 1972, vol. 31, p. 456.

    Google Scholar 

  145. M.N. Bassim and D. Kuhlmann-Wilsdorf:phys. stat. sol. (a) 1973, vol. 15, p. 725; 1973, vol. 16, pp. 241, 281, and 379; 1973, vol. 19, p. 335.

    Google Scholar 

  146. J. C. M. Li:J. Austr. Inst. Metals, 1963, vol. 8, p. 206.

    Google Scholar 

  147. J. T. Fourie, P. J. Jackson, D. Kuhlmann-Wilsdorf, D. A. Rigney, J.H. van der Merwe, and H.G.F. Wilsdorf:Scripta Met., 1982, vol. 16, p. 157.

    CAS  Google Scholar 

  148. P. D. K. Nathanson, P. J. Jackson, and D. R. Spalding:Acta Metall., 1980, vol. 28, p. 823.

    CAS  Google Scholar 

  149. O.L. de Lange, P. J. Jackson, and P.D. K. Nathanson:Acta Metall., 1980, vol. 28, p. 833.

    Google Scholar 

  150. P. J. Jackson, O.L. de Lange, and P. D.K. Nathanson: inDislocation Modelling of Physical Systems, C. S. Hartley, M. F. Ashby, R. Bullough, and J.P. Hirth, eds., Pergamon, Oxford, 1981.

    Google Scholar 

  151. P. J. Jackson, O. L. de Lange, and C. J. Young:Acta Metall., 1982, vol. 30, p. 483.

    CAS  Google Scholar 

  152. G.I. Taylor:Trans. Faraday Soc., 1928, vol. 24, p. 121.

    CAS  Google Scholar 

  153. K. Yamaguchi:Sci. Pap. Inst. Phys. Chem. Res. (Jpn), 1929, vol. 11, p. 151.

    CAS  Google Scholar 

  154. D. M. Moon and W. H. D. Robinson:Can. J. Phys., 1967, vol. 45, p. 567.

    Google Scholar 

  155. U. Essmann:phys. stat. sol., 1965, vol. 12, p. 732.

    Google Scholar 

  156. P. Gassenmeier and M. Wilkins:phys. stat. sol., 1968, vol. 30, p. 833.

    CAS  Google Scholar 

  157. C.S. Pande and P.M. Hazzledine:Phil. Mag., 1971, vol. 24, p. 1393.

    CAS  Google Scholar 

  158. F.C. Frank:Pittsburgh Symp. on the Plastic Deformation of Crystalline Solids, Rep. NAVEXOS-P-834, Office of Naval Research, Washington, DC, 1950, p. 150.

    Google Scholar 

  159. D. Kuhlmann-Wilsdorf:J. Appl. Phys., 1962, vol. 33, p. 648.

    CAS  Google Scholar 

  160. D.L. Holt:J. Appl. Phys., 1970, vol. 41, p. 3197.

    Google Scholar 

  161. M.R. Staker and D.L. Holt:Ada Metall., 1972, vol. 20, p. 569.

    CAS  Google Scholar 

  162. A.H. Cottrell and V. Aytekin:J. lnst. Met., 1950, vol. 77, p. 389.

    CAS  Google Scholar 

  163. P. Haasen and A. Kelly:Acta Metall., 1957, vol. 5, p. 192.

    CAS  Google Scholar 

  164. H. Mughrabi:J. Microsc. Spectrosc. Electron., 1976, vol. 1, p. 571.

    Google Scholar 

  165. G. Masing:Z. Physik, 1947, vol. 124, p. 586.

    Google Scholar 

  166. D. Kuhlmann-Wilsdorf:Mat. Sci. Engg., 1979, vol. 39, p. 231.

    CAS  Google Scholar 

  167. B. Grzemba and H. Hu:Z. Metallkunde, 1969, vol. 60, p. 944.

    CAS  Google Scholar 

  168. P. Charsley and D. Kuhlmann-Wilsdorf:Phil. Mag., 1981, vol. A44, p. 1351.

    Google Scholar 

  169. D. Kuhlmann-Wilsdorf and E. Aemoudt:J. Appl. Phys., 1983, vol. 54, p. 184.

    CAS  Google Scholar 

  170. C. J. Ball:Phil. Mag., 1957, vol. 2, p. 977.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at the symposium “50th Anniversary of the Introduction of Dislocations” held at the fall meeting of the TMS-AIME in Detroit, Michigan in October 1984 under the TMS-AIME Mechanical Metallurgy and Physical Metallurgy Committees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhlmann-Wilsdorf, D. Theory of workhardening 1934-1984. Metall Trans A 16, 2091–2108 (1985). https://doi.org/10.1007/BF02670414

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670414

Keywords

Navigation