Skip to main content
Log in

Dynamic fracture behavior of Ti-6Al-4V alloy with various stabilities of βphase

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of stability of the body-centered cubic (bcc) β phase on the dynamic fracture behavior of Ti-6Al-4V alloy at room temperature and 77 K has been studied. The presence of a highly unstable β phase in the quenched alloy leads to a decrease in both the dynamic fracture toughness and the crack propagation energy, and this decrease bccomes more pronounced when test temperature is reduced to 77 K. Somewhat improved fracture characteristics were obtained by applying anneal procedure to receive a fully stable β phase. The highest fracture toughness as well as the greatest crack propagation resistance were observed in the air-cooled grade, where the lattice parameter of the bcc phase was intermediate between those pertaining to quenched and annealed Ti-6Al-4V alloys. The effect is attributed to the vanadium content in the β phase, which is sufficiently high to suppress deformation-induced transformation. On the other hand, the V content should be low enough to retard ductile-brittle transition, typical for the bcc metals at cryogenic temperatures. As a result, marked toughening can be achieved, so that the lowest application temperature of high-strength titanium alloys containing the bcc phase can be decreased significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Tobler and R.P. Reed:Advances Cryogenic Engineering Materials, Plenum Press, New York, NY, 1982, vol. 28, pp. 83–92.

    Google Scholar 

  2. J. Charles, A. Lutts, and A. Berghezan:Advances Cryogenic Engineering Materials, Plenum Press, New York, NY, 1982, vol. 28, pp. 105–14.

    Google Scholar 

  3. R.P. Reed:Austenitic Steels at Low Temperatures, Plenum Press, New York, NY, 1983, pp. 41–67.

    Google Scholar 

  4. T. Kobayashi and H. Yamamoto:Metall. Trans. A, 1988, vol. 19A, pp. 319–27.

    CAS  Google Scholar 

  5. M. Niinomi, T. Kobayashi, I. Inagaki, and A.W. Thompson:Metall. Trans. A, 1990, vol. 21A, pp. 1733–44.

    CAS  Google Scholar 

  6. C.J. Guntner and R.P. Reed:Trans. ASM, 1962, vol. 55, pp. 399–419.

    CAS  Google Scholar 

  7. T.W. Duerig, G.T. Terlinde, and J.C. Williams:Metall. Trans. A, 1980, vol. 11A, pp. 1987–98.

    CAS  Google Scholar 

  8. T. Kobayashi, M. Niinomi, Y. Koide, and K. Matsunuma:Trans. Jpn. Inst. Met., 1986, vol. 27, pp. 775–83.

    Google Scholar 

  9. M.A. Imam and CM. Gilmore:Metall. Trans. A, 1983, vol. 14A, pp. 233–40.

    Google Scholar 

  10. V.S. Tomsinsky, M.I. Shyshkina, and L.L. Ershova:Technol. Legkich Splavov, 1974, (10), pp. 35–39 (in Russian).

  11. B. Hadjsassi and P. Lehr:Mec. Mater. Electr., 1977, vol. 60, pp. 3–13.

    Google Scholar 

  12. M. Grujicic and C.P. Narayan:Mater. Sci. Eng., 1992, vol. A151, pp. 217–26.

    CAS  Google Scholar 

  13. T. Kobayashi:Eng. Fract. Mech., 1984, vol. 19, pp. 67–79.

    Article  Google Scholar 

  14. T. Kobayashi, I. Yamamoto, and M. Niinomi:Eng. Fract. Mech., 1986, vol. 24, pp. 773–82.

    Article  Google Scholar 

  15. S. Glazunov and B. Kolachev, eds.:Metallographyya Titanoveach Splavov, Metallurgy, Moscow, 1980, p. 87 (in Russian).

    Google Scholar 

  16. T. Kobayashi, K. Takai, and H. Maniwa:Trans. ISM, 1967, vol. 7, pp. 115–25.

    Google Scholar 

  17. T. Tsuchida and H. Kosuge:Science and Technology of Light Alloys, 1991, The Japan Institute of Light Alloys, Tokyo, pp. 211–16.

    Google Scholar 

  18. D.A. Wigley:Mechanical Properties of Materials at Low Temperatures, Plenum Press, New York, NY, 1971, p. 332.

    Google Scholar 

  19. H. Albert and I. Pfeiffer:Z. Metallkd., 1976, vol. 67, pp. 356–60.

    CAS  Google Scholar 

  20. J.L. Murray:Phase Diagrams of Binary Titanium Alloys, ASM INTERNATIONAL, Metal Park, OH, 1990, p. 325.

    Google Scholar 

  21. C.R. Brooks:Heat Treatment, Structure and Properties of Nonferrous Alloys, ASM, Metals Park, OH, 1982.

    Google Scholar 

  22. S. HanActa, T. Yoshio, K. Nishimura, and O. Izumi:Proc. Sixth World Conf. on Titanium, Cannes, 1988, P. Lacombe, R. Tricot, and G. Beranger, eds., pp. 105–10.

  23. S.G. Fedotov:Titanium Science and Technology, Plenum Press, New York, NY, 1973, pp. 871–81.

    Google Scholar 

  24. J.H. bcchtold:Acta Metall., 1955, vol. 3, pp. 249–54.

    Article  Google Scholar 

  25. S. HanActa and O. Izumi:Metall. Trans. A, 1987, vol. 18A, pp. 265–71.

    Google Scholar 

  26. W.M. Garrison, Jr., N.R. Moody:J. Phys. Chem. Solids, 1987, vol. 48 (11), pp. 1035–74.

    Article  CAS  Google Scholar 

  27. Standard Method of Test for Elastic-Plastic Fracture Toughness, JSME, Tokyo, 1981, JSME 001-1981, p. 67 (in Japanese).

  28. Z. Nishiyama:Martensitic Transformation, Academic Press, New York, NY, 1978, p. 269.

    Google Scholar 

  29. T.W. Duerig, J. Albrecht, D. Riechter, and P. Fischer:Acta Metall., 1982, vol. 30, pp. 2161–72.

    Article  CAS  Google Scholar 

  30. M. Young, E. Levine, and H. Margolin:Metall. Trans., 1974, vol. 5, pp. 1891–98.

    Article  CAS  Google Scholar 

  31. H.J. Rack, D. Kalish, and K.D. Fike:Mater. Sci. Eng., 1970, vol. 5, pp. 181–98.

    Google Scholar 

  32. A.I.P. Nwobu, H.F. Flower, and D.R.F. West:Proc. Sixth World Conf. on Titanium, Cannes, 1988, P. Lacombe, R. Tricot, and G. Beranger, eds., pp. 1583–87.

  33. S. Ishiyama, S. HanActa, and O. Izumi:ISU Int., 1991, vol. 31 (8), pp. 807–13.

    CAS  Google Scholar 

  34. G.T. Gray, III and P.S. Follansbee:Proc. Sixth World Conf. on Titanium, Cannes, 1988, P. Lacombe, R. Tricot, and G. Beranger, eds., pp. 117–22.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Assistant Professor, Department of Production Systems Engineering, Toyohashi University of Technology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akmoulin, I.A., Niinomi, M. & Kobayashi, T. Dynamic fracture behavior of Ti-6Al-4V alloy with various stabilities of βphase. Metall Mater Trans A 25, 1655–1666 (1994). https://doi.org/10.1007/BF02668531

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668531

Keywords

Navigation