Skip to main content
Log in

P792: a rapid clearance blood pool agent for magnetic resonance imaging: preliminary results

  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

An original MRI contrast agent, called P792, is described. P792 is a gadolinium macrocyclic compound based on a Gd-DOTA structure substituted by hydrophilic arms. The chemical structure of P792 has been optimized in order to provide (1) a high r1 relaxivity in the clinical field for MRI: 29 mM−1 x s−1 at 60 MHz. (2) a high biocompatibility profile and (3) a high molecular volume: the apparent hydrodynamic volume of P792 is 125 times greater than that of Gd-DOTA. As a result of this high molecular volume, P792 presents an unusual pharmacokinetic profile, as it is a Rapid Clearance Blood Pool Agent (RCBPA) characterized by limited diffusion across the normal endothelium. The original pharmacokinetic properties of this RCBPA are expected to be well suited to MR coronary angiography, angiography, perfusion imaging (stress and rest), and permeability imaging (detection of ischemia and tumor grading). Further experimental imaging studies are ongoing to define the clinical value of this compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brasch RC. Rationale and applications for macromolecular Gd-based contrast agents. Magn Reson Med 1991;22:282–7.

    Article  PubMed  CAS  Google Scholar 

  2. Marchand B. Douek P, Benderbous S. Corot C, Canet E. Pilot MR evaluation of pharmacokinetics and relaxivity of specific blood pool agents for MR angiography. Invest Radiol 2000;35:41–9.

    Article  PubMed  CAS  Google Scholar 

  3. Clément O, Kerviler E. Cuenod C, Siauve N, Frija G. Agents de contraste en IRM. Feuillets de radiologie 1995;35:366–80.

    Google Scholar 

  4. Mattews SE. Pouton CW, Threadgill MD. Macromolecular systems for chemotherapy and magnetic resonance imaging. Adv Drug Deliv Rev 1996;18:219–67.

    Article  Google Scholar 

  5. Kroft LJM. Ross A. Blood pool contrast agents for cardiovascular MR imaging. J Magn Reson Imaging 1999;10:395–403.

    Article  PubMed  CAS  Google Scholar 

  6. Bonnemain B. Les produits à rémanence vasculaire: définition et applications potentielles. Ann Pharm Fr 1998;56:134–8.

    PubMed  CAS  Google Scholar 

  7. Port M. Meyer D, Bonnemain B, Corot C, Schaefer M. Rousseaux O. Simonot C. Bourrinet P, Benderbous S. Dencausse A, Devoldère L. P760 and P775: MRI contrast agents characterized by new pharmacokinetic properties. MAGMA 1999;8:172–6.

    Article  PubMed  CAS  Google Scholar 

  8. Corot C, Port M. Raynal I. Dencausse A. Schaefer M, Rousseaux O. Simonot C. Devoldère L. Lin J, Foulon M, Bourrinet P. Bonnemain B, Meyer D. Physical, chemical and biological evaluations of P760: a new gadolinium complex characterized by a low rate of interstitial diffusion. J Magn Reson Imaging 2000;11:182–91.

    Article  PubMed  CAS  Google Scholar 

  9. Hashiguchi Y. Nakatani A. Fujimoto C, Seri S. Takahashi K. Kato-Azuuwa M. Contrast enhanced MRI of brain tumor in rats using a new medium molecular size contrast agent. Proc Intl Soc Mag Reson Med 2000:8:2035 Abstract ISMRM. Denver 1–7 April 2000.

    Google Scholar 

  10. Weinman HJ. Ebert W, Wagner S. A new dedicated contrast agent for MR angiography. In: Outkerk M, Edelman RR, editors. High-Power Gradient MR-Imaging. Berlin: Blackwell Wissenschafts. 1997;327–9 Chapter V.

    Google Scholar 

  11. Su MY, Mühler A, Lao X, Nalcioglu O. Tumor characterization with dynamic contrast enhanced MRI using MR contrast agents of various molecular weights. Magn Reson Med 1998;39:259–69.

    Article  PubMed  CAS  Google Scholar 

  12. Clarke SE, Weinmann HJ. Dai E, Lucas AR, Rutt BK. Comparison of two blood pool contrast agents for 0.5 T MR angiography: experimental study in rabbits. Radiology 2000;214:787–94.

    PubMed  CAS  Google Scholar 

  13. Ogan MD, Schmiedl U, Moseley ME, Grodd W, Paajenen H. Brasch RC. Albumin labeled with Gd-DOTA. An intravascular contrast enhancing agent for magnetic resonance blood pool imaging: preparation and characterization. Invest Radiol 1987;22:665–71.

    Article  PubMed  CAS  Google Scholar 

  14. Lauffer RB, Parmelee DJ, Duham SU. MS325-albumine-targeted contrast agent for MR angiography. Radiology 1998;207:529–38.

    PubMed  CAS  Google Scholar 

  15. Lauffer RB, Parmelec DJ, Ovelctt HS, Dolan BSP, Sajiki H, Scott DM, Bernard PJ, Buchanan EM, Ong KY, Tyeklar Z, Midelfort KS, Mc Murry TJ, Walowitch RC. MS325: a small molecular vascular imaging agent for magnetic resonance imaging. Acad Radiol 1996;3:356–6358.

    Article  Google Scholar 

  16. Jung CW. Jacobs P. Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumostran, ferumoxsil. Magn Reson Med 1995; 13:661–74.

    CAS  Google Scholar 

  17. Corot C, Schaefer M, Beauté S, Bourrinet P, Zehaf Z, Benizé V, Sabatou M, Meyer D. Physical chemical and biological evaluation of CMD-A2-Gd-DOTA. Acta Radiol 1997;S412:91–9.

    Google Scholar 

  18. Adam G, Ncverburg J, Spüntrup E, Mühler A, Scherer K. Günther RW. Gd-DTPA cascade polymer: potential blood pool contrast agent for MR Imaging. J Magn Reson Imaging 1994;4:462–6.

    Article  PubMed  CAS  Google Scholar 

  19. Schuhmann-Giampieri G, Schmitt-Willich H, Frenzel T, Press VVR, Weinman HJ. In vivo and in vitro evaluation of Gd-DTPA polylysine as a macromolecular agent for magnetic resonance imaging. Invest Radiol 1991;26:969–74.

    Article  PubMed  CAS  Google Scholar 

  20. Canet E. Casali S, Desenfant A, An MY, Corot C, Obadia JF. Revel D, Janvier MF. Kinetic characterization of CMD A2 Gd-DOTA as an intravascular contrast agent for myocardial perfusion measurement with MRI. Magn Reson Med 2000;43:403–9.

    Article  PubMed  CAS  Google Scholar 

  21. Vold RV, Waugh JS, Klein MP, Phelps DE. Measurement of spin relaxation in complex systems. J Chem Phys 1968;48:3831.

    Article  CAS  Google Scholar 

  22. Reed LJ, Muench H. A simple method of estimating fifty per cent end points. Am J Hyg 1938;27:493–7.

    Google Scholar 

  23. Bousquet JC, Saini S, Stark DD, Hahn PF, Nigam M, Willenberg J, Ferrucci JT. Gd-DOTA: characterisation of a new para-magnetic complex. Radiology 1988;166:693–8.

    PubMed  CAS  Google Scholar 

  24. Kumar K. Macrocyclic polyamino carboxylatc complexes of Gd III as magnetic resonance imaging contrast agents. J Alloys Compounds 1997;249:163–72.

    Article  CAS  Google Scholar 

  25. Wang X, Jin T, Comblin W, Lopez-Mut A, Merciny E, Desreux JF. A kinetic investigation of the lanthanide DOTA chelates. Stability and rates of formation and of dissociation of a macro-cyclic gadolinium III polyaza polycarboxylic MRI contrast agent. Inorg Chem 1992;31:1095–9.

    Article  CAS  Google Scholar 

  26. Meyer D, Schaefer M, Doucet D. Advance in macrocyclic gadolinium complexes as MRI contrast agents. Invest Radiol 1990;25:S5l-5.

    Google Scholar 

  27. Cacheris WP, Nickle SK, Sherry AD. Thermodynamic study of lanthanide complexes of 1,4,7 triazacyclononane-N,N′,N′-tri-acetic acids and 1,4,7,10-tetraazacyclododecane N,N′.N′.N′-te-traacetic acid. Inorg Chem 1987;26:958–60.

    Article  CAS  Google Scholar 

  28. Clarke ET, Martell AE. Stabilities of trivalent metal ion complexes of the tetraacetate derivatives of 12-, 13 and 14-membered tetraazamacrocycles. Inorg Chem Acta 1991; 190:37–46.

    Article  CAS  Google Scholar 

  29. Caravan P, Ellisar JJ, Mc Murry TJ, Lauffer RB. Gadolinium III chelates as MRI contrast agents: structure dynamics and applications. Chem Rev 1999;99:2293–353.

    Article  PubMed  CAS  Google Scholar 

  30. Howard JAK, Kenwright AM, Moloney JM, Parker D, Port M, Navet VI, Rousseaux O, Woods M. Structure and dynamics of all the stereoisomers of europium complexes of tetra (carboxyethyl) derivatives of DOTA: ring inversion is decoupled from cooperative arm rotation in the RRRR and RRRS isomers, Chem Commun 1998; 13:1381–82.

    Article  Google Scholar 

  31. Tweedle VIF. Physicochemical properties of gadoteridol ond other magnetic resonance contrast agents. Invest Radiol 1992;27:52–6.

    Article  Google Scholar 

  32. Geraldes CFGC, Sherry AD, Lozar I, Miseta A. Bogwer P, Berenyi E, Sumeri B. Kiefer GE, Mc Vlillan K, Matar F, Muller RN. Relaxometry animal biodistribution and magnetic resonance imaging studies of some new gadolinium III macrocyclic phosphinate and phosphonate monoester complexes. Magn Reson Med 1993;30:696–703.

    Article  PubMed  CAS  Google Scholar 

  33. Wiener EC. Dendrimer based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 1994;31:1–8.

    Article  PubMed  CAS  Google Scholar 

  34. Moghimi SM, Bonnemain B. Subcutaneous and intravenous delivery of diagnostic agents to the lymphatic system: applications in lymphoscintigraphy and indirect lymphography. Adv Drug Deliv Rev 1999;37:295–312.

    Article  PubMed  CAS  Google Scholar 

  35. Corot C, Violas X, Robert P, Port M. Pharmacokinetics of three gadolinium chelates with different molecular sizes shortly after intravenous injection in rabbits. Invest Radiol 2000;35:213–8.

    Article  PubMed  CAS  Google Scholar 

  36. Wielopolski PA, Geuns RJM. Feyter PJ. Oudkerk VI. Coronary-arteries. Eur Radiol 2000;10:12–35.

    Article  PubMed  CAS  Google Scholar 

  37. Woodard PK, Debiao L. Zheng J, Haake EM, Gropler RJ. Coronary MR angiography. MRI Clin N Am 1999;7:365–78.

    CAS  Google Scholar 

  38. Folkman J. The role of angiogenesis in tumor growth. Sem Cancer Biol 1992;3:657.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Port, M., Corot, C., Rousseaux, O. et al. P792: a rapid clearance blood pool agent for magnetic resonance imaging: preliminary results. MAGMA 12, 121–127 (2001). https://doi.org/10.1007/BF02668093

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668093

Keywords

Navigation