Skip to main content
Log in

Electrical activity, mode of incorporation and distribution coefficient of group V elements in Hg1−xCdxTe grown from tellurium rich liquid phase epitxial growth solutions

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Hg1−xCdxTe films were grown liquid phase epitaxially from tellurium rich solutions containing up to 10 at. % of the group V elements P, As, Sb, and Bi. Chemical analysis of the Te growth solutions and the films was carried out in conjunction with extensive Hall effect measurements on the films subsequent to various annealing treatments under Hg rich and Te rich conditions. Despite the presence of a large concentration of the group V elements in the Te source solution, the maximum concentration of these elements incorporated into the liquid phase epitaxially grown Hg1-xCdxTe appears to vary from <1015cm−3 for Bi up to 1017cm−3 for phosphorus and As implying a distribution coefficient varying from <10−5 for Bi up to 10−3 for P at growth temperature of ∼500° C. This low value of the distribution coefficient for group V elements for growths from Te rich solutions contrasts with the moderately high values reported in the literature to date for growth from Hg rich solutions as well as pseudobinary solutions (Bridgman growth). The widely differing distribution coefficients and hence the solubility of the group V elements for Hg rich and Te rich liquid phase epitaxial solutions is explained on the basis that the activity coefficient of the group V elements in Te rich solutions is probably orders of magnitude lower than it is in Hg rich solutions. Finally, the results of the anneals at 200° C under Hg saturated conditions with and without a 500° C Hg saturated preanneal have indicatedn top conversion in many of the films attesting to the amphoteric behavior of the group V elements in LPE grown Hg1−xCdxTe(s) similar to the previously reported behavior of P in bulk grown Hg0.8Cd0.2Te.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Schmit and J. E. Bowers, Appl. Phys. Lett.35, 6 (1979).

    Article  Google Scholar 

  2. C. C. Wang, S. H. Shin, M. Chu, M. Lanir and A. H. B. Van derWyck, J. Electrochem. Soc.127, 175 (1980).

    Article  CAS  Google Scholar 

  3. J. A. Mroczkowski and H. R. Vydyanath, J. Electrochem. Soc.128, 655 (1981).

    Article  CAS  Google Scholar 

  4. T. C. Harman, J. Electron. Mater.9, 945 (1980).

    CAS  Google Scholar 

  5. T. C. Harman, J. Electron. Mater.10, 1069 (1981).

    CAS  Google Scholar 

  6. Y. Nemirousky, S. Margalit, E. Finkman, Y. Shachman-Diamond and I. Kidron, J. Electron. Mater.11, 133 (1982).

    Google Scholar 

  7. K. Nagahama, R. Ohkata, K. Nishitani and T. Murotani, J. Electron. Mater.13, 67 (1984).

    CAS  Google Scholar 

  8. D. D. Edwall, E. R. Gertner and W. E. Tennant, J. Electron. Appl. Phys.55, 1453 (1984).

    Article  CAS  Google Scholar 

  9. P. E. Herning, J. Electron. Mater.13, 1 (1984).

    CAS  Google Scholar 

  10. C. C. Wang, M. Chu, S. H. Shin, W. E. Tennant, J. T. Cheung, M. Lanir, A. H. B. Van der Wyck, G. M. Williams, L. O. Bubulac and R. J. Eisel, IEEE Trans. Electron DevicesEd-27, 154 (1980).

    CAS  Google Scholar 

  11. M. Lanir and K. J. Riley, IEEE Trans. Electron DevicesEd-29, 274 (1982).

    Google Scholar 

  12. P. R. Bratt, J. Vac. Sci. Technol.A1, 1687 (1983).

    Google Scholar 

  13. P. S. Nayar, P. B. Ward, P. C. Colter, S. R. Hampton, J. W. Slawinski, L. Fishman, C. M. Callahan and H. R. Vydyanath, Technical Digest IEDM, San Francisco (1984) p. 385.

  14. R. A. Riedel, E. R. Gertner, D. D. Edwall and W. E. Tennant, Appl. Phys. Lett.46, 64 (1985).

    Article  Google Scholar 

  15. C. E. Jones, K. James, J. Merz, R. Braunstein, M. Burd, M. Eetemadi, S. Hutton and J. Drumheller, J. Vac. Sci. Technol.A3, 131 (1985).

    Google Scholar 

  16. E. S. Johnson and J. L. Schmit, J. Electron. Mater.6, 25 (1977).

    CAS  Google Scholar 

  17. H. R. Vydyanath, J. Electrochem. Soc.128, 2609 (1981).

    Article  CAS  Google Scholar 

  18. H. R. Vydyanath, J. Electrochem. Soc.128, 2619 (1981).

    Article  CAS  Google Scholar 

  19. H. R. Vydyanath and F. A. Kroger, J. Electron. Mater.11, 111 (1982).

    CAS  Google Scholar 

  20. H. R. Vydyanath, R. C. Abbott and D. A. Nelson, J. Appl. Phys.54, 1323 (1983).

    Article  CAS  Google Scholar 

  21. P. Capper, J. Cryst. Growth57, 280 (1982).

    Article  CAS  Google Scholar 

  22. P. Capper, J. J. G. Gosney, C. L. Jones and I. Kenworthy, J. Cryst. Growth71, 57 (1985).

    Article  CAS  Google Scholar 

  23. M. H. Kalisher, J. Cryst. Growth.70, 365 (1984).

    Article  CAS  Google Scholar 

  24. H. R. Vydyanath, J. C. Donovan and D. A. Nelson, J. Electrochem. Soc.128, 2625 (1981).

    Article  CAS  Google Scholar 

  25. L. J. van der Pauw, Phillips Tech. Rev.20, 220 (1959).

    Google Scholar 

  26. F. A. Selim and F. A. Kroger, J. Electrochem. Soc.124, 401 (1977).

    Article  CAS  Google Scholar 

  27. R. A. Swalin “Thermodynamics of Solids” (Wiley, New York, 1972) p. 128.

    Google Scholar 

  28. H. R. Vydyanath and J. Ellsworth, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vydyanath, H.R., Ellsworth, J.A. & Devaney, C.M. Electrical activity, mode of incorporation and distribution coefficient of group V elements in Hg1−xCdxTe grown from tellurium rich liquid phase epitxial growth solutions. J. Electron. Mater. 16, 13–25 (1987). https://doi.org/10.1007/BF02667786

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02667786

Key words

Navigation