Skip to main content
Log in

Solute interactions in multicomponent solutions

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The mathematical formalism for description of solute interactions in dilute, multicomponent solutions should be consistent with (a) the Gibbs-Duhem relations and associated thermodynamic definitions and (b) the principle of regularity of dilute solutions due primarily to Darken. Wagner's original suggestion that Inγ i and Inγ j be represented by Taylor's series expansions, withε i (j) = εj (i), meets both these criteria if and only if both first and second order terms are included, with second order coefficients equal to the negatives of the first order coefficients, as in the Darken quadratic formalism. The resulting Wagner-Darken quadratic formalism can be modified for better fit to some experimental data, without loss of rigor, by different choices of components and different definitions of activity coefficients. The recent conjectures of Sukiennik and Olesinski about the thermodynamic validity of the original Wagner formalism are addressed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

activity of a solution component

G E′ :

excess Gibbs free energy, extensive property

G E :

molal excess Gibbs free energy

n i :

number of moles

R :

gas constant

T :

absolute temperature

X i :

mole fraction

Y i :

moles

i :

per mole solvent

α ij :

Darken interaction parameters

ε i )j) :

Wagner interaction coefficients

γ i, γi′:

activity coefficients

References

  1. M.Z. Sukiennik and R.W. Olesinski:Metall. Trans. B, 1984, vol. 15B, pp. 677–80.

    Article  Google Scholar 

  2. R. Schuhmann, Jr.:Acta Metall., 1955, vol. 3, pp. 219–26.

    Article  CAS  Google Scholar 

  3. N. A. Gokcen:J. Phys. Chem., 1960, vol. 64, pp. 401–06.

    Article  CAS  Google Scholar 

  4. C. Wagner:Thermodynamics of Alloys, Addison-Wesley Press, Cambridge, MA, 1952, pp. 47–53.

    Google Scholar 

  5. L. S. Darken:Trans. TMS-AIME, 1967, vol. 239, pp. 80–89.

    CAS  Google Scholar 

  6. L.S. Darken:Trans. TMS-AIME, 1967, vol. 239, pp. 90–96.

    CAS  Google Scholar 

  7. C.H.P. Lupis and J.F. Elliott:Acta Metall., 1966, vol. 14, pp. 529–38.

    Article  CAS  Google Scholar 

  8. J. Chipman:Trans. TMS-AIME, 1967, vol. 239, pp. 1332–36.

    CAS  Google Scholar 

  9. R. Schuhmann, Jr., P.-C. Chen, P. Palanisamy, and D. H. R. Sarma:Metall. Trans. B, 1976, vol. 7B, pp. 95–101.

    CAS  Google Scholar 

  10. H.H. Kellogg:Physical Chemistry in Metallurgy, Proc. Darken Conf., U.S. Steel Research Lab., Monroeville, PA, 1976, pp. 59–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuhmann, R. Solute interactions in multicomponent solutions. Metall Trans B 16, 807–813 (1985). https://doi.org/10.1007/BF02667517

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02667517

Keywords

Navigation