Skip to main content
Log in

Epitaxial growth and piezoelectric properties of A1N, GaN, and GaAs on sapphire or spinel

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Heteroepitaxial films of the III-V compounds, A1N, GaN and GaAs have been grown on insulating substrates by reactions involving Group III metal-organic compounds and Group V hydrides. The films were examined with respect to crystallography, surface topography, uniformity, residual strain, and electrical and acoustic properties with emphasis on those orientations which are of particular interest to surface acoustic wave (SAW) device applications. Aluminum nitride films up to 10 µm in thickness were grown on 1″ diameter sapphire substrates with a 5% to 10% thickness variation. The films, though characterized as single crystal by x-ray means, exhibited a grain-like structure and considerable surface faceting. The residual strain in the films depends on the crystallographic direction and increases substantially with film thickness. These films exhibit useful surface acoustic properties. Epitaxial GaN films are more easily prepared than A1N films but by contrast are semiconducting unless “doped” with Zn or Li during the growth process. Films of this material are similar crystallographically to A1N and preliminary results show that they exhibit piezoelectric properties. The lack of published data on the acoustic properties of GaN films is probably due to the difficulty in compensating the films to provide insulating layers in device structures. Preliminary results obtained on GaAs epitaxial layers are discussed briefly because of the semiconducting properties of this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a review see: P. H. Carr, IEEE Trans. on Microwave Theory and Tech.MTT-17, 845 (1969). E. Stern, ibid., 835 (1969). D. A. Gandolfo, RCA Engineer15, 54 (1969). R. M. White, Proc. IEEE58, 1238 (1970).

    Article  Google Scholar 

  2. G. Galli and J. E. Coker, Appl. Phys. Letters16, 439 (1970).

    Article  CAS  Google Scholar 

  3. J. H. Collins, P. J. Hagon, and G. R. Pulliam, Ultrasonics8, 218 (1970).

    Article  CAS  Google Scholar 

  4. J. M. Hammer, D. J. Channin, M. T. Duffy, and J. P. Wittke, Appl. Phys. Letters21, 358 (1972).

    Article  CAS  Google Scholar 

  5. A. J. Noreika and D. W. Ing, J. Appl. Phys.39, 5578 (1968).

    Article  CAS  Google Scholar 

  6. G. A. Cox et al., J. Phys. Chem. Solids28, 543 (1967).

    Article  CAS  Google Scholar 

  7. H. M. Manasevit, F. M. Erdmann, and W. I. Simpson, J. Electrochem. Soc.118, 1864 (1971).

    Article  CAS  Google Scholar 

  8. W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, J. Appl. Phys.44, 292 (1973).

    Article  CAS  Google Scholar 

  9. B. B. Kosicki and D. Kahng, J. Vacuum Sci. Technol.6, 593 (1969).

    Article  CAS  Google Scholar 

  10. H. P. Maruska and J. J. Tietjen, Appl. Phys. Letters15, 327 (1969).

    Article  CAS  Google Scholar 

  11. D. K. Wickenden et al., J. Crystal Growth9, 158 (1971).

    Article  CAS  Google Scholar 

  12. H. M. Manasevit and W. I. Simpson, J. Electrochem. Soc.116, 1725 (1969).

    Article  CAS  Google Scholar 

  13. P. Rai-Choudhury, J. Electrochem. Soc.116, 1745 (1969).

    Article  CAS  Google Scholar 

  14. C.C. Wang and S. H. McFarlane III, J. Crystal Growth13–14, 262 (1972).

    Article  Google Scholar 

  15. H. M. Manasevit and W. I. Simpson, J. Electrochem. Soc.118, 644 (1971).

    Article  CAS  Google Scholar 

  16. A. C. Thorsen and H. M. Manasevit, J. Appl. Phys.42, 2519 (1971).

    Article  CAS  Google Scholar 

  17. S. H. McFarlane III and C. C. Wang, J. Appl. Phys.43, 1724 (1972).

    Article  CAS  Google Scholar 

  18. H. M. Manasevit and A. C. Thorsen, Trans. Met. Soc. AIME1, 623 (1970).

    CAS  Google Scholar 

  19. C. C. Wang, Technical Report AFML-TR-72-138, June (1972).

  20. G. W. Cullen, J. Crystal Growth9, 107 (1971).

    Article  CAS  Google Scholar 

  21. A. Reisman, M. Berkenblit, J. Cuomo, and S. A. Chan, J. Electrochem. Soc.118, 1653 (1971).

    Article  CAS  Google Scholar 

  22. P. J. Hagon, L. Dyal, and K. M. Lakin, IEEE Ultrasonics Symposium Proceedings, Boston meeting, Oct. 1972 (page 274).

  23. L. R. Adkins, ibid, (page 292).

  24. O. S. Heavens,Thin Film Physics, Methuen and Co. Ltd., London (1970).

    Google Scholar 

  25. J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, J. of Luminescence4, 63 (1971).

    Article  CAS  Google Scholar 

  26. J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, RCA Review32, 383 (1971).

    CAS  Google Scholar 

  27. H. G. Grimmeiss, R. Groth, and J. Maak, Z. Naturforsch.15a, 799 (1960).

    CAS  Google Scholar 

  28. A. J. Slobodnik, Jr. and E. D. Conway, Microwave Acoustics Handbook, Rpt. AFCRL-70-0164 (1970).

  29. R. V. Schmidt and F. W. Voltmer, IEEE Trans. on Microwave Theory and TechniquesMTT-17, 920 (1969).

    Article  Google Scholar 

  30. M. R. Daniel and J. de Klerk, Appl. Phys. Letters16, 331 (1970).

    Article  CAS  Google Scholar 

  31. W. R. Smith, J. Appl. Phys.42, 3016 (1971).

    Article  CAS  Google Scholar 

  32. P. Das and M. N. Araghi, Appl. Phys. Letters16, 293 (1970).

    Article  Google Scholar 

  33. J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, J. Luminescence5, 84 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research jointly sponsored by the Air Force Materials Laboratory, Wright-Patterson Air Force Base, under Contract F33615-70-C-1536

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duffy, M.T., Wang, C.C., O’clock, G.D. et al. Epitaxial growth and piezoelectric properties of A1N, GaN, and GaAs on sapphire or spinel. J. Electron. Mater. 2, 359–372 (1973). https://doi.org/10.1007/BF02666163

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02666163

Keywords

Navigation