Skip to main content
Log in

Strain relaxation in epitaxial overlayers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The misfit between an epilayer and a substrate may be accommodated by misfit dislocations (MDs) or misfit strain (MS) or both. In a small misfit system the misfit is accommodated by MS alone up to a critical thickness whereafter the residual MS decreases as the thickness increases. The main objective of this paper is to review theoretical work aimed at understanding MS relief in a growing epilayer by the introduction of MDs, with the view of resolving the discrepancies between predicted and observed critical thickness and residual MS after onset of MS relief. Since the predictions are based on equilibrium principles, equilibrium theories for monolayers (MLs) in the Frenkel-Kontorowa model, and for thickening epilayers (growing ML-by-ML) in the Volterra model, are briefly summarized, including some consideration of the conditions for ML-by-ML growth. Since equilibration can be drastically retarded by barriers to nucleation and motion of dislocations the observed quantities are most often non-equilibrium values. Calculations show (i) that MD sources are normally needed to the onset of MS relief, (ii) that threading dislocations are the “softest” sources, (iii) that even with threading dislocation sources MS relief may lag behind equilibrium predictions and (iv) that Peierls friction may lead to an infinitely large critical thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Vook, Int. Metall. Rev.27, 209 (1982).

    CAS  Google Scholar 

  2. J. W. Matthews, in Dislocations in Solids, vol. 2, ed. F. R. N. Nabarro (North Holland, Amsterdam, 1979), p. 463.

    Google Scholar 

  3. V. G. Keramidas, Mater. Sci. Engr.B6, 69 (1990).

    Article  CAS  Google Scholar 

  4. I. Lyuksyutov and E. Bauer, Surf. Sci.220, 29 (1989).

    Article  CAS  Google Scholar 

  5. F. C. Frank and J. H. van der Merwe, Proc. R. Soc., London, Ser. A198, 205, 216 (1949);200, 125 (1949).

    Google Scholar 

  6. J. Frenkel and T. Kontorowa, Phys. Z. Sowjet-union13, 1 (1938).

    CAS  Google Scholar 

  7. S. Fuke, M. Umamura, N. Yamada and K. Kuwahara, J. Appl. Phys.68, 97 (1990).

    Article  CAS  Google Scholar 

  8. E. Bauer, Z. Kristallogr.110, 423 (1958).

    Google Scholar 

  9. E. Bauer and J. H. van der Merwe, Phys. Rev. B.33, 3657 (1986).

    Article  CAS  Google Scholar 

  10. D. Cherns and M. J. Stowell, Thin Solid Films37, 249 (1976).

    Article  CAS  Google Scholar 

  11. C. G. Tuppen and C. J. Gibbings, J. Appl. Phys.68, 1526 (1990).

    Article  CAS  Google Scholar 

  12. L. Gonzalez, A. Ruiz, A. Mazuelas, G. Armelles, H. Recio and F. Briones, Superlatt. and Microstruct.5, 5 (1989).

    Article  CAS  Google Scholar 

  13. B. Elman, E. S. Koteles, P. Melman, C. Jagannath and D. Dugger, Inst. Phys. Conf. Ser. No. 106, Chap. 4 (1989) 171; Appl. Phys. Lett.55, 1659 (1989).

  14. D. C. Houghton, C. J. Gibbings, C. G. Tuppen, M. H. Lyon and M. A. G. Halliwell, Thin Solid Films183, 171 (1989).

    Article  CAS  Google Scholar 

  15. H. J. Hertzog, H. Jorke, E. Kasper and S. Mantl, J. Electrochem. Soc.136, 3026 (1989).

    Article  Google Scholar 

  16. P. Pirouz, and C. Scripta Metall.21, 1463 (1987).

    Article  CAS  Google Scholar 

  17. D. Kuhlmann-Wilsdorf, Phys. Rev.120, 773 (1960).

    Article  CAS  Google Scholar 

  18. J. Y. Tsao, B. W. Dodson, S. T. Picraux and D. M. Cornelison, Phys. Rev. Lett.59, 2455 (1987).

    Article  CAS  Google Scholar 

  19. B. W. Dodson and J. Y. Tsao, Annu. Rev. Mater. Sci.19, 419 (1989).

    CAS  Google Scholar 

  20. D. Cherns, Anaheim MRS Meeting, April 87.

  21. J. H. van der Merwe, in Chemistry and Physics of Solid Surfaces, Vol. 5, editors: R. Vanselow and R. Howe (Springer-Verlag Berlin, 1984) p. 365.

    Google Scholar 

  22. S. A. Chambers and V. A. Loebs, Phys. Rev. B.42, 5109 (1990).

    Article  CAS  Google Scholar 

  23. P. R. Berger, K. Chang, P. Bhattacharya, J. Singh and K.K. Bajaj, Appl. Phys. Lett.53, 684 (1988).

    Article  CAS  Google Scholar 

  24. P. A. Dowben, M. Onellion and J. Kirne, Scann. Microsc.2, 177 (1988).

    CAS  Google Scholar 

  25. S. Iyer, H. MarkoÇ, H. Zabel and N. Otsuka, Comments Cond. Matter. Phys.15, 1 (1989).

    CAS  Google Scholar 

  26. I. Markov and A. Trayanov, J. Phys: Condens. Matter2, 6965 (1990).

    Article  Google Scholar 

  27. A. Milchev and I. Markov, Surf. Sci.156, 397 (1985).

    Google Scholar 

  28. K. Ozasa, M. Yuri, S. Tanaka and H. Matsunami, J. Appl. Phys.68, 107 (1990).

    Article  CAS  Google Scholar 

  29. J. H. van der Merwe, Proc. Phys. Soc, London, Sect. A63, 616 (1950).

    Article  Google Scholar 

  30. P. M. Stoop, J. H. van der Merwe and M. Braun, Philos. Mag., A (1991) in press.

  31. F. R. N. Nabarro, Proc. Phys. Soc., London59, 256 (1947).

    Article  CAS  Google Scholar 

  32. L. B. Freund, J. Mech. Phys. Solids38, 657 (1990).

    Article  Google Scholar 

  33. J. P. Hirth and X. Feng, J. Appl. Phys.67, 3343 (1990).

    Article  Google Scholar 

  34. R. Hull and J. C. Bean, J. Vac. Sci. Technol.A7, 2580 (1989).

    Google Scholar 

  35. G. E. Rhead, Contemp. Phys.24, 535 (1983).

    Article  CAS  Google Scholar 

  36. J. H. van der Merwe and E. Bauer (Private Communication), (1991).

  37. K. Bruinsma and A. Zangwill, J. Phys.47, 2055 (1986).

    CAS  Google Scholar 

  38. R. F. C. Farrow, Mat. Res. Soc. Symp. Proc.37, 275 (1985).

    CAS  Google Scholar 

  39. J. H. van der Merwe, J. Woltersdorf and W. A. Jesser, Mater. Sci. Eng.81, 1 (1986).

    Article  Google Scholar 

  40. J. H. van der Merwe, J. Appl. Phys.41, 4725 (1970).

    Article  Google Scholar 

  41. J. H. van der Merwe, J. Appl. Phys.34, 117, 123 (1963).

    Article  Google Scholar 

  42. J. H. van der Merwe, Philos. Mag. A45, 127, 145, 159 (1982).

    Article  Google Scholar 

  43. K. Jagannadham and J. Narayan, Mater. Sci. Eng. A113, 65 (1989).

    Article  Google Scholar 

  44. H. L. Tsai and Y. C. Kao, J. Appl. Phys.67, 2862 (1990).

    Article  CAS  Google Scholar 

  45. K. Takayanagi, K. Kobayashi, K. Yagi and G. Honjo, Thin Solid Films21, 32 (1974).

    Article  Google Scholar 

  46. K. H. Chang, P. K. Bhattacharya and R. Gibala, J. Appl. Phys.66, 2993 (1989).

    Article  CAS  Google Scholar 

  47. S. Sharan and J. Narayan, Mater. Sci. Eng. A113, 57 (1989).

    Article  Google Scholar 

  48. S. A. Dregia and J. P. Hirth, preprint (1990).

  49. D. C. Houghton and N. L. Rowell, preprint (1990).

  50. R. Hull, J. C. Bean, D. J. Werder and R. E. Leibengut, Phys. Rev. B40, 1681 (1989).

    Article  CAS  Google Scholar 

  51. L. B. Freund, J. Appl. Phys.68, 2073 (1990).

    Article  Google Scholar 

  52. H. P. Strunk, An Evaluation of Adv. Semicond. Mater, by Electron Microscopy, ed. D. Cherns, Nato ASI Series B: Physics Vol. 203 (Plenum Press, New York, 1989) p. 369.

    Google Scholar 

  53. M. Albrech and H. P. Strunk, in Polycrystalline Semiconductors (Proc. Int. Conf. Polycr. Sem. “90”), eds., J. H. Werner and H. P. Strunk.

  54. J. Narayan, S. Sharan and K. Jagannadham, J. de Phys. ColloqueC5, 49, C5-731 (1988).

    Google Scholar 

  55. S. Sharan, K. Jagannadham and J. Narayan, preprint (1990).

  56. M. Tikhov and E. Bauer, preprint, (1989).

  57. D. L. Tonsing and J. H. van der Merwe, Phys. Rev. B, (1991) submitted.

  58. D. L. Tönsing, J. H. van der Merwe and P. M. Stoop, private commun. (1991).

  59. S. V. Kamat and J. P. Hirth, J. Appl. Phys.67, 6844 (1990).

    Article  Google Scholar 

  60. G. Wagner, V. Gottschalch, H. Rhan and P. Pauffer, Phys. Status Solid: (a)53, 684 (1988); (a)112, 519 (1989).

    Google Scholar 

  61. C. G. Tuppen, C. J. Gibbings and M. Hockly, J. Cryst. Growth94, 392 (1989).

    Article  CAS  Google Scholar 

  62. W. A. Jesser and J. H. van der Merwe, J. Appl. Phys.64, 4968 (1988).

    Article  Google Scholar 

  63. C. J. Gibbings, C. G. Tuppen and M. Hockly, Appl. Phys. Lett.54, 148 (1989).

    Article  CAS  Google Scholar 

  64. D. C. Houghton, D. D. Perovic, J. H. Baribeau and G. C. Weatherly, J. Appl. Phys.67, 1850 (1990).

    Article  CAS  Google Scholar 

  65. D. C. Houghton, C. J. Gibbings, C. G. Tuppen, M. H. Lyons and M. A. G. Halliwell, Appl. Phys. Lett.56, 460 (1990).

    Article  CAS  Google Scholar 

  66. J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth27, 118 (1974).

    CAS  Google Scholar 

  67. J. H. van der Merwe and W. A. Jesser, J. Appl. Phys.63, 1509 (1988).

    Article  Google Scholar 

  68. B. A. Fox and W. A. Jesser, J. Appl. Phys.68, 2081 (1990).

    Article  Google Scholar 

  69. People and Bean, Appl. Phys. Lett.47, 322 (1985);49, 229 (1986).

    Article  CAS  Google Scholar 

  70. P. M. J. Maree, J. C. Barbour, J. F. van der Veen, K. L. Kavanagh, C. W. T. Bulle-Lieuwma and M. P. A. Viegers, J. Appl. Phys.62, 4730 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Merwe, J.H. Strain relaxation in epitaxial overlayers. J. Electron. Mater. 20, 793–803 (1991). https://doi.org/10.1007/BF02665967

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665967

Key words

Navigation