Skip to main content
Log in

Multiphase binary diffusion in infinite and semi-infinite media: Part II. On the numerical calculation of the rate constants for formation of product phases

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The equations describing multiphase binary diffusion derived in the preceding article are arranged in an order such that the unknowns in the equations are expressed as two series of sequential functions of the corresponding two independent variables. The conditions to be satisfied between one series of functions and the other are given, and a numerical method for solving this type of equations of two unknowns is developed. For the numerical calculation of the parabolic rate constants for formation of product phases, data of average interdiffusion coefficients, partial molal volumes, and phase boundary compositions are required for an infinite medium. For a semi-infinite medium, in addition to these data, information on the equilibrium surface composition and the ratio of mole transfers of the two components at the surface is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

n :

number of possible phases present in a diffusion specimen

N + A :

atomic fraction of componentA on the right-hand side of the original diffusion specimen

N j,j± 1 A :

atomic fraction of componentA of phasej coexisting with phasesj - 1 orj + 1

−V j i :

partial molal volume of componenti for phasej

−D j :

interdiffusion coefficient for phasej

Ω + :

initial value of Ωn, n−1

N - A :

atomic fraction of componentA on the lefthand side of the original diffusion couple

Ω - :

initial value of Ω1,2

t :

diffusion annealing time

N s A :

atomic fraction of componentA at the surface of a specimen

γ :

ratio of the number of moles of componentA from the gas into the substrate to that of componentB in the opposite direction

R i :

relative atomic mass of speciesi

Ω s :

initial value of Ωs

λ j,j± 1 :

rate constant for moving the interface(j/ j+1) relative to theX j = 0 plane ( j,j± 1⋅≈D1/2 j)

K j :

rate constant for layer growth of product phasej (=λj,j+1 - λj,j-1)

δ j/j+1 :

rate constant for longitudinal change resulting from mutual transfers of componentsA andB between phasesj andj + 1 ( = λj,j+1.- λj+1.j)

X j,j± 1 :

displacement of the interfaces(j/j-l) and(j/j+1) relative to theX j = 0 plane(=2t 1/2 . λj ,j± 1)

W j :

layer width of phase j (=2t1/2 ⋅kj)

δT :

change in the thickness of a diffusion specimen on mixing of componentsA andB (=2t 1/2⋅Σn- 1 j=1δj/j+1)

λ s :

rate constant for moving the surface relative to theX 1 = 0 plane(=Ω s⋅≈D1/2 1)

Km :

rate constant for mass change per unit area of the surface

δM :

change in the mass of a specimen per unit area of the surface before and after reaction(=2t 1/2km)

References

  1. L.S. Castlemann and L.L. Seigle:Trans. TMS-AlME, 1958, vol. 212, pp. 589–96.

    Google Scholar 

  2. G.V. Kidson and G.D. Miller:J. Nucl. Mater., 1964, vol. 12, pp. 61–69.

    Article  CAS  Google Scholar 

  3. R.S. Timsit:Acta. Metall., 1985, vol. 33, pp. 97–104.

    Article  CAS  Google Scholar 

  4. K. Hirano and Y. Ipposhi:J. Jpn. Inst. Met., 1986, vol. 32, pp. 815–20.

    Google Scholar 

  5. W. Seith:Diffusion in Metallen, Springer-Verlag, Göttingen, 1955, p. 162.

  6. J.D. Baird:J. Nucl. Energy A, 1960, vol. 11, pp. 81–88.

    CAS  Google Scholar 

  7. T. Nishizawa and A. Chiba:J. Jpn. Inst. Met., 1970, vol. 34, pp. 629–38.

    CAS  Google Scholar 

  8. W. Jost:Diffusion in Solids, Liquids and Gases, Academic Press, New York, NY, 1960, p. 74.

    Google Scholar 

  9. K.P. Gurov, V.N. Pimenov, Yu.E. Ugaste, and A. Ye. Schelest:Fizika Metall., 1972, vol. 33, pp. 519–26.

    CAS  Google Scholar 

  10. K.P. Gurov, V.N. Pimenov, and Yu.E. Ugaste:Fizika Metall., 1971, vol. 32, pp. 103–08.

    CAS  Google Scholar 

  11. I. JÄger and J. Matauschek:Z. Metallkd., 1978, vol. 69, pp. 761–65.

    Google Scholar 

  12. S. Tsuji:Metall. Mater. Trans. A, 1994, vol. 2SA, pp. 741–51.

    Google Scholar 

  13. J.B. Scarborough:Numerical Mathematical Analysis, Johns Hopkins Press, Baltimore, MD, 1966, p. 197.

    Google Scholar 

  14. S. Tsuji:J. Jpn. Inst. Met., 1977, vol. 41, pp. 670–78.

    Google Scholar 

  15. G.T. Home and R.F. Mehl:Trans. TMS-AlME, 1955, vol. 203, pp. 88–94.

    Google Scholar 

  16. Y. Funamizu and K. Watanabe:J. Jpn. Inst. Met., 1975, vol. 39, pp. 1087–92.

    CAS  Google Scholar 

  17. Y. Funamizu and K.Watanabe:Bull Faculty Eng.,Bull. Faculty Eng., Hokkaido University, 1974, vol. 71, pp. 15-24.

  18. G. Shirn, E. Wajda, and H. Huntington:Acta Metall., 1953, vol. 1, pp. 513–18.

    Article  CAS  Google Scholar 

  19. M. Hansen and K. Anderko:Constitution of Binary Alloys, McGraw-Hill, New York, NY, 1958, p. 649.

    Google Scholar 

  20. E.A. Owen and E.W. Roberts:Phil. Mag., 1939, vol. 27, pp. 294–327.

    CAS  Google Scholar 

  21. W. Hume-Rothery, G.F. Lewin, and P.W. Reynolds:Proc. R. Soc. A, 1936, vol. 157, pp. 167–83.

    Article  Google Scholar 

  22. L.H. Beck and C.S. Smith:Trans. TMS-AlME, 1952, vol. 4, pp. 1079–83.

    CAS  Google Scholar 

  23. E.A. Owen and L. Pickup:Proc. R. Soc. A, 1933, vol. 140, pp. 179–91.

    Article  Google Scholar 

  24. A. Johansson and A. Westgren:Metallwirt., 1933, vol. 12, pp. 385–87.

    CAS  Google Scholar 

  25. K. Löhberg:Z. Metallkd., 1940, vol. 32, pp. 86–90.

    Google Scholar 

  26. M. Hansen and W. Stenzel:Metallwirt., 1933, vol. 12, pp. 539–42.

    CAS  Google Scholar 

  27. Yu.E. Ugaste:Fiz. Metal. Metalloved., 1969, vol. 27, pp. 663–67. 28. Th. Heumann and A. Kottmann:Z. Metallkd., 1953, vol. 44, pp. 139-54.

    CAS  Google Scholar 

  28. K. Schwerdtfeger:Trans. TMS-A1ME, 1967, vol. 239, pp. 1432–38.

    CAS  Google Scholar 

  29. M.J. Klein:J. Appl. Phys., 1967, vol. 38, pp. 167–70.

    Article  CAS  Google Scholar 

  30. W.B. Pearson:A Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol.2 (Vol. 4 ofInternational Series of Monographs on Metal Physics and Physical Metallurgy), G.V. Raynor, ed., Pergamon Press, New York, NY, 1967, p. 125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuji, S. Multiphase binary diffusion in infinite and semi-infinite media: Part II. On the numerical calculation of the rate constants for formation of product phases. Metall Mater Trans A 25, 753–761 (1994). https://doi.org/10.1007/BF02665452

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665452

Keywords

Navigation