We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Mathematical modeling of microsegregation in binary metallic alloys

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

A mathematical model was developed to calculate microsegregation in binary metallic alloys. This model utilized the mathematical techniques of the method of lines combined with invariant imbedding (MOL/II) to solve the problem of combined heat and mass transfer during and after solidification. Model predictions were compared to experimental measurements in the Al-Cu system and to other microsegregation models. The MOL/II model predicted nonequilibrium second-phase contents within ±3 pct at low and intermediate cooling rates, when dendrite-arm coarsening was included in the model. It also was able to reproduce concentration profiles reasonably well. The analytical models commonly used (equilibrium cooling, Scheil equation, Brody/ Flemings model, Clyne/Kurz model, Solari/Biloni model, and Basaran equation) in micro-segregation calculations were shown to be considerably less accurate than the numerical models (MOL/II and the Ogilvy/Kirkwood model).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

constant used in coarsening equations

C e :

solute concentration in liquid at eutectic temperature (mole pct)

Cg227p:

heat capacity (J/kg K) Co initial solute concentration (mole pct)

C :

concentration of solute (mole pct)

D :

chemical diffusivity of solute (m2/s)

ΔH f :

enthalpy of fusion (J/kg)

h :

location of interface (m)

k :

equilibrium partition coefficient (mole pct solute in solid/mole pct solute in liquid)

m :

slope of liquidus curve (K/mole pct)

n :

exponent from Eq. [1]

q :

mass flux, defined by Eq. [13] (mole pct × m/s)

R :

Riccati parameter, defined by Eq. [18] (m2 K/W)

S :

Riccati parameter, defined by Eq. [19] (m/s)

T :

temperature (K) 70 melting point of pure solvent (K)

T :

temperature at interface (K)

t :

time (s)

t s :

solidification time (s) v heat flux, defined by Eq. [12] (W/m2)

w :

Riccati parameter, defined by Eq. [18] (K)

x :

position (m)

z :

Riccati parameter, defined by Eq. [19] (mole pct x m/s) α

ρCpΔt:

(W/m3 K)

β :

pre-exponential term in Eq. [1] (m)

Γ:

Gibbs-Thomson coefficient (K m)

ε:

cooling rate (K/s)

κ:

thermal conductivity (W/m K)

λ :

dendrite-arm spacing (m)

λ 0 :

initial secondary dendrite-arm spacing (m)

λ 1 :

primary dendrite-arm spacing (m)

λ 2 :

secondary dendrite-arm spacing (m)

ρ:

mass density (kg/m3)

Σ:

parameter used in determination of interface position (mole pct × m/s) Subscripts/Superscripts

S :

solid

L :

liquid

n :

current time-step

i :

current mesh point int at interface

References

  1. G. Forsen, E. Hettula, and K. Lilius: inPhysical Chemistry of Extractive Metallurgy, V. Kudryk and Y.K. Rao, eds., TMS-AIME, New York, NY, 1985, pp. 353–77.

    Google Scholar 

  2. O. Hammer and G. Grunbaum:Scand. J. Metall., 1974, vol. 3, pp. 11–20.

    Google Scholar 

  3. B.A. Rickinson and D.H. Kirkwood: inSolidification and Casting, Institute of Metals, London, 1979.

    Google Scholar 

  4. H.Y. Hunsicker: inAluminum, Vol. I: Properties, Physical Metallurgy, and Phase Diagram, K.R. Van Horn, ed., ASM, Metals Park, OH, 1967.

    Google Scholar 

  5. E.A. Loria:J. Met., 1988, vol.40 (7), pp. 36–41.

    CAS  Google Scholar 

  6. Thomas P. Battle and Robert D. Pehlke:Metall. Trans. B, 1989, vol. 20B, pp. 149–60.

    CAS  Google Scholar 

  7. Solidification Processing 1987, Institute of Metals, London, 1988, pp. 55-78.

  8. D.H. Kirkwood:Mater. Sci. Eng., 1984, vol. 65, pp. 101–09.

    Article  CAS  Google Scholar 

  9. T.P. Battle and R.D. Pehlke:Proc. Int. Symp. on Computer Software in Chemical and Extractive Metallurgy, Canadian Institute of Mining and Metallurgy, Montreal, 1989.

    Google Scholar 

  10. E. Scheil:Z. Metallkd., 1942, vol. 34, pp. 70–72.

    Google Scholar 

  11. H.D. Brody and M.C. Flemings:Trans. TMS-AIME, 1966, vol. 236, pp. 615–24.

    CAS  Google Scholar 

  12. T.F. Bower, H.D. Brody, and M.C. Flemings:Trans. TMS-AIME, 1966, vol. 236, pp. 624–34.

    CAS  Google Scholar 

  13. T.W. Clyne and W. Kurz:Metall. Trans. A, 1981, vol. 12A, pp. 965–71.

    Google Scholar 

  14. M. Solari and H. Biloni:J. Cryst. Growth, 1980, vol. 49, pp. 451–57.

    Article  CAS  Google Scholar 

  15. M.H. Burden and J.D. Hunt:J. Cryst. Growth, 1974, vol. 22, pp. 109–16.

    Article  CAS  Google Scholar 

  16. V. Laxmanan:Acta Metall., 1985, vol. 33, pp. 1037–49.

    Article  CAS  Google Scholar 

  17. T.Z. Kattamis, J.C. Coughlin, and M.C. Flemings:Trans. TMS-AIME, 1967, vol. 239, pp. 1504–11.

    CAS  Google Scholar 

  18. D.H. Kirkwood:Mater. Sci. Eng., 1985, vol. 73, pp. L1-L4.

    Article  CAS  Google Scholar 

  19. W. Kurz and D.J. Fisher:Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1984.

    Google Scholar 

  20. A. Roosz, E. Haider, and H.E. Exner:Mater. Sci. Technol., 1986, vol. 2, pp. 1149–55.

    CAS  Google Scholar 

  21. M. Rappaz, W. Kurz, and M.E. Glicksman: paper presented at 1985 Fall Meeting of TMS-AIME, Toronto.

  22. M.E. Glicksman and P.W. Voorhees:Metall. Trans. A, 1984, vol. 15A, pp. 995–1001.

    CAS  Google Scholar 

  23. M. Basaran:Metall. Trans. A, 1981, vol. 12A, pp. 1235–43.

    Google Scholar 

  24. A.J.W. Ogilvy: Ph.D. Thesis, Sheffield University, Sheffield, United Kingdom, 1983.

  25. A.J.W. Ogilvy and D.H. Kirkwood:Appl. Sci. Res., 1987, vol.44, pp. 43–49.

    Article  CAS  Google Scholar 

  26. T. Matsumiya, H. Kajioka, S. Mizoguchi, Y. Ueshima, and H. Esaka:Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 873–82.

    Google Scholar 

  27. T.P. Battle: Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 1988.

  28. S. Minakawa, I.V. Samarasekera, and F. Weinberg:Metall. Trans. B, 1985, vol. 16B, pp. 595–604.

    CAS  Google Scholar 

  29. J. Crank:Free and Moving Boundary Problems, Clarendon Press, Oxford, United Kingdom, 1984.

    Google Scholar 

  30. J. Crank: inNumerical Methods in Heat Transfer, R.W. Lewis, K. Morgan, and O.C. Zienkiewicz, eds., John Wiley & Sons, New York, NY, 1981, pp. 177–200.

    Google Scholar 

  31. R.M. Furzeland:J. Inst. Math. Its Appl., 1980, vol. 26, pp. 411–29.

    Article  Google Scholar 

  32. G.H. Meyer:Initial Value Methods for Boundary Value Problems, Academic Press, New York, NY, 1973.

    Google Scholar 

  33. G.H. Meyer:Int. J. Heat Mass Transfer, 1981, vol. 24, pp. 778–81.

    Article  CAS  Google Scholar 

  34. G.H. Meyer:SIAM J. Numer. Anal., 1981, vol. 18, pp. 150–64.

    Article  Google Scholar 

  35. B. Carnahan and J.O. Wilkes:Chemical Process Design, 1981, pp. 225-84.

  36. S.C. Chapra and R. Canale:Numerical Methods for Engineers with Personal Computer Applications, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1985.

    Google Scholar 

  37. T.P. Battle and R.D. Pehlke:Solidification Processing 1987, Institute of Metals, London, 1988, pp. 71–74.

    Google Scholar 

  38. M.C. Flemings, D.R. Poirier, R.V. Barone, and H.D. Brody:J. Iron Steel Inst., 1970, vol. 208, pp. 371–81.

    CAS  Google Scholar 

  39. J.A. Sarreal and G.J. Abbaschian:Metall. Trans. A, 1986, vol. 17A, pp. 2063–73.

    CAS  Google Scholar 

  40. D.A. Bennett: Ph.D. Thesis, University of Sheffield, Sheffield, United Kingdom, 1978.

  41. T. Ejima, T. Yamamura, N. Uchida, Y. Matsuzaki, and M. Nikaido:J. Jpn. Inst. Met., 1980, vol. 44, pp. 316–23.

    CAS  Google Scholar 

  42. J.B. Murphy:Acta Metall., 1961, vol. 9, pp. 563–69.

    Article  CAS  Google Scholar 

  43. S. Ganesan and D.R. Poirier:Metall. Trans. A, 1987, vol. 18A, pp. 721–23.

    CAS  Google Scholar 

  44. J.L. Murray:Int. Met. Rev., 1985, vol. 30, pp. 211–33.

    CAS  Google Scholar 

  45. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, and D.D. Wagman:Selected Values of the Thermodynamic Properties of the Elements, ASM, Metals Park, OH, 1973.

    Google Scholar 

  46. O. Kubaschewski and C.B. Alcock:Metallurgical Thermo-chemistry, 5th ed., Pergamon Press, Elmsford, NY, 1979.

    Google Scholar 

  47. C.Y. Ho, M.W. Ackerman, K.Y. Wu, S.G. Oh, and T.N. Havill:J. Phys. Chem. Ref. Data, 1978, vol. 7, pp. 959–1177.

    Article  CAS  Google Scholar 

  48. C.Y. Ho, R.W. Powell, and P.E. Liley:J. Phys. Chem. Ref. Data, 191A, vol. 3, suppl. 1.

  49. M. Gündüz and J.D. Hunt:Acta Metall., 1985, vol. 33, pp. 1651–72.

    Article  Google Scholar 

  50. S.V. Subramanian, C.W. Haworth, and D.H. Kirkwood:J. Iron Steel Inst., 1968, vol. 206, pp. 1027–32.

    CAS  Google Scholar 

  51. L. Kaufman and H. Nesor:CALPHAD, 1978, vol. 2, pp. 295–318.

    Article  CAS  Google Scholar 

  52. D.A. Bennett and D.H. Kirkwood:Met. Sci., 1984, vol. 18, pp. 17–21.

    Article  CAS  Google Scholar 

  53. W.J. Boettinger, S.R. Coriell, and R.F. Sekerka:Mater. Sci. Eng., 1984, vol. 65, pp. 27–36.

    Article  CAS  Google Scholar 

  54. A.A. Howe:Appl. Sci. Res., 1987, vol. 44, pp. 51–59.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Research Assistant, The University of Michigan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battle, T.P., Pehlke, R.D. Mathematical modeling of microsegregation in binary metallic alloys. Metall Trans B 21, 357–375 (1990). https://doi.org/10.1007/BF02664204

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02664204

Keywords

Navigation