Skip to main content
Log in

Operant strain-rate sensitivity during tensile necking

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Precisely machined tensile specimens of aluminum-killed steel sheet were used to measure the continuous strain-rate sensitivity,m c, in a series of isothermal tests at different crosshead speeds.m cwas found to be independent of strain and strain rate, in contrast with the “jump” test instantaneous strain sensitivity, mi, which was found to vary strongly with strain rate. A series of matched tensile specimens was also photogridded and deformed at three rates and terminated at four elongations. The strain distributions obtained from these tests were compared with Finite Element Modeling (FEM)—calculated ones based on several strain-rate sensitivity formulations. Comparison of calculations with experiments revealed that the opérant rate sensitivity during tensile localization,m t, was intermediate betweenm candm iat each rate and elongation. Once the effective rate sensitivity was established, detailed predictions of strain distributions and failure elongations agreed very well with experiment. A qualitative model of strain-based stress transients was proposed for both strain-rate and strain-state path changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Backofen, I. R. Turner, and D. H. Avery:Trans. ASM Q., 1964, vol. 57, p. 980.

    Google Scholar 

  2. D. H. Avery and W. A. Backofen:Trans. ASM Q., 1965, vol. 58, p. 551.

    CAS  Google Scholar 

  3. A. Melander:Scr. Metall., 1980, vol. 14, p. 1273.

    Article  Google Scholar 

  4. F. A. Nichols:Acta Metall., 1980, vol. 28, p. 663.

    Article  CAS  Google Scholar 

  5. A. K. Ghosh:Trans. ASME H: J. Engrg. Mat. Technol., 1977, vol. 99, p. 264.

    CAS  Google Scholar 

  6. S. S. Hecker:Met. Eng. Q., 1974, vol. 14, p. 30.

    Google Scholar 

  7. D. V. Wilson:Met. Technol., 1980, vol. 7, p. 282.

    CAS  Google Scholar 

  8. R. Stevenson:Metall. Trans. A, 1980, vol. 11A, p. 1909.

    CAS  Google Scholar 

  9. A. S. Korhonen:Proc. 12th Biennial Congress Int. Deep Drawing Res. Group, St. Margherita Ligure, Italy, May 24–28, 1982;Assoc. Italiana di Metallurgia, 1982, p. 191.

    Google Scholar 

  10. T. Nicholas:Exp. Mech., 1981, vol. 21, p. 177.

    Article  Google Scholar 

  11. U. K. Tanaka and T. Nojima:Inst. Phys. Conf. Ser. No. 47, Inst. of Physics, 1979, p. 166.

  12. A. M. Eleiche and J. D. Campbell: “Technical Report AFML-TR-76-90,” Wright-Patterson Air Force Base, OH, 1976.

    Google Scholar 

  13. A. M. Eleiche and J. D. Campbell:Exp. Mech., 1976, vol. 16, p. 281.

    Article  Google Scholar 

  14. J. D. Campbell, A. M. Eleiche, and M. C. C. Tsao:Strength of Metals and Alloys at High Strains and Strain Rates, R. I. Jaffee and B. A. Wilcox, eds., Plenum Press, New York, NY, 1977, p. 545.

    Google Scholar 

  15. M. L. Wilson, R. H. Hawley, and J. Duffy: “National Science Foundation Technical Report NSF ENG 75-1853218,” March 1979, Washington, DC.

  16. J. Klepaczko and J. Duffy: “National Science Foundation Technical Report CME79-23742/2,” February 1981, Washington, DC.

  17. A. M. Eleiche:Exp. Mech., 1981, vol. 20, p. 289.

    Google Scholar 

  18. M. S. Hashmi:J. Strain. Anal., 1980, vol. 15, p. 201.

    Article  Google Scholar 

  19. C. C. Skena: “TMS Paper Selection F80-8,” The Metallurgical Society of AIME, 1980, Warrendale, PA.

    Google Scholar 

  20. A. K. Sachdev and R. H. Wagoner:J. Appl. Metalworking, 1983, vol. 3(1), p. 32.

    Google Scholar 

  21. R. H. Wagoner:Metall. Trans. A, 1981, vol. 12A, p. 877.

    Google Scholar 

  22. J. Winlock:Trans. AIME, 1953, vol. 197, p. 797.

    Google Scholar 

  23. D. A. Chatfield and R. R. Rote: “SAE Paper #740177,” SAE Congress, Feb. 25–Mar. 1, 1974, Detroit, MI.

    Google Scholar 

  24. A. Saxena and D. A. Chatfield: “SAE Paper #760209,” SAE Congress, Feb. 22–27, 1976, Detroit, MI.

    Google Scholar 

  25. H. J. Kleemola and A. J. Ranta-Eskola:Sheet. Met. Ind., 1979, vol. 48, p. 1046.

    Google Scholar 

  26. T. Sawada: “Proc. 12th Biennial Congress Int. Deep Drawing Res. Group,” St. Margherita Ligure, Italy, May 24–28, 1982;Assoc. Italiana di Metallurgia, 1982, p. 159.

    Google Scholar 

  27. A. N. Bramley and P. B. Mellor:J. Strain Anal., 1966, vol. 1, p. 439.

    Article  Google Scholar 

  28. S. Dalela:Precis. Engrg., 1980, vol. 2, p. 13.

    Article  CAS  Google Scholar 

  29. A. S. Korhonen and H. J. Kleemola:Metall. Trans. A, 1978, vol. 9A, p. 979.

    Google Scholar 

  30. R. Stevenson:Trans. ASME H: J. Engrg. Mat. Technol., 1981, vol. 103, p. 261.

    CAS  Google Scholar 

  31. R. Stevenson: ASTM STP 765:Mechanical Testing for Deformation Model Development, R. W. Rohde and J. C. Swearengen, eds., American Society for Testing and Materials, Philadelphia, PA, 1982, p. 366.

    Google Scholar 

  32. W. C. Leslie and R. J. Sober:Trans. ASM, 1967, vol. 60, p. 459.

    CAS  Google Scholar 

  33. A. K. Sachdev:Metall. Trans. A, 1982, vol. 13A, p. 1063.

    CAS  Google Scholar 

  34. A. Aran:Scr. Metall., 1979, vol. 13, p. 843.

    Article  CAS  Google Scholar 

  35. J. Hedworth and M. J. Stowell:M. Mat. Sci., 1971, vol. 6, p. 1061.

    CAS  Google Scholar 

  36. U. F. Kocks:Rate Processes in Plastic Deformation of Materials, J. C. M. Li and A. K. Mukherjee, eds., ASM, Metals Park, OH, 1975, p. 356.

    Google Scholar 

  37. E. W. Hart:Acta Metall., 1970, vol. 18, p. 599.

    Article  CAS  Google Scholar 

  38. E. W. Hart:Rate Processes in Plastic Deformation of Materials, J. C. M. Li and A. K. Mukherjee, eds., ASM, Metals Park, OH, 1975, p. 284.

    Google Scholar 

  39. E. W. Hart, C. Y. Li, H. Yamada, and G. L. Wire:Physical Basis of Constitutive Equations, A. S. Argon, ed., MIT Press, Cambridge, MA, 1975, p. 149.

    Google Scholar 

  40. E. W. Hart:Trans. ASME H: J. Engrg. Mat. Technol., 1976, vol. 98, p. 193.

    CAS  Google Scholar 

  41. G. Ferron and M. Mliha-Touati:Scr. Metall., 1982, vol. 16, p. 911.

    Article  Google Scholar 

  42. G. Ferron:Scr. Metall., 1983, vol. 17, p. 247.

    Article  Google Scholar 

  43. J. V. Laukonis:Metall. Trans. A, 1981, vol. 12A, p. 467.

    Google Scholar 

  44. R. H. Wagoner and J. V. Laukonis:Metall. Trans. A, 1983, vol. 14A, p. 1487.

    Google Scholar 

  45. R. H. Wagoner:Scr. Metall., 1981, vol. 15, p. 1135.

    Article  CAS  Google Scholar 

  46. I. Gupta and J. C. M. Li:Metall. Trans., 1970, vol. 1, p. 2323.

    Article  CAS  Google Scholar 

  47. H. Yamada and C.-Y. Li:Acta Metall., 1974, vol. 22, p. 249.

    Article  CAS  Google Scholar 

  48. R. H. Wagoner:Experimental Verification of Process Models, C. Chen, ed., ASM, Metals Park, OH, 1983, p. 236.

    Google Scholar 

  49. R. H. Wagoner:Metall. Trans. A, 1981, vol. 12A, p. 71.

    Google Scholar 

  50. J. H. Hollomon:Trans. AIME, 1945, vol. 162, p. 268.

    Google Scholar 

  51. O. Hoffman and G. Sachs:Introduction to the Theory of Plasticity for Engineers, McGraw-Hill, New York, NY, 1953, p. 45.

    Google Scholar 

  52. A. K. Sachdev and J. E. Hunter:Metall. Trans. A, 1982, vol. 13A, p. 1063.

    CAS  Google Scholar 

  53. R. Hill:Proc. Roy. Soc., 1949, vol. 198, p. 428.

    Article  CAS  Google Scholar 

  54. R. Hill:The Mathematical Theory of Plasticity, Clarendon Press, Oxford, 1950, p. 318.

    Google Scholar 

  55. R. Hill:Math. Proc. Cambridge Phil. Soc., 1979, vol. 85, p. 179.

    Article  Google Scholar 

  56. N.-M. Wang: “A Rigid-Plastic Rate-Sensitive Finite Element Method for Modeling Sheet Metal In-Plane Stretching,” GM Research Report GMR-4079, General Motors Research Laboratories, Warren, MI, June 1982; andNumerical Methods in Industrial Forming Processes, J. F. T. Pittman, R. D. Wood, J. M. Alexander, and O. C. Zienkiewicz, eds., Pineridge Press, Swansea, UK, 1982, p. 797.

    Google Scholar 

  57. R. H. Wagoner:Metall. Trans. A, 1980, vol. 11A, p. 165.

    CAS  Google Scholar 

  58. R. H. Wagoner:Metall. Trans. A, 1982, vol. 13A, p. 1491.

    Google Scholar 

  59. H. Mecking and K. Lücke:Scr. Metall., 1970, vol. 4, p. 427.

    Article  Google Scholar 

  60. F. Fröhlich and P. Grau:Phys. Stat. Sol. (A), 1972, vol. 14, p. 115.

    Article  Google Scholar 

  61. G. Schoeck and B. Wielke:Scr. Metall., 1976, vol. 10, p. 771.

    Article  Google Scholar 

  62. B. Wielke:Acta Metall., 1978, vol. 26, p. 103.

    Article  CAS  Google Scholar 

  63. B. Wielke and G. Schoeck:Scr. Metall., 1978, vol. 12, p. 655.

    Article  Google Scholar 

  64. Z. S. Basinski, P. J. Jackson, and M. S. Duesbery:Phil. Mag., 1977, vol. 36, p. 255.

    Article  CAS  Google Scholar 

  65. S. J. Basinski and Z. S. Basinski:Dislocations in Solids, North-Holland, NY, 1979, pp. 261–362.

    Google Scholar 

  66. P. J. Jackson:Scr. Metall., 1978, vol. 12, p. 653.

    Article  Google Scholar 

  67. Z. S. Basinski and P. J. Jackson:Phys. Stat. Sol., 1965, vol. 9, p. 805.

    Article  CAS  Google Scholar 

  68. P. W. Osborne:Acta Metall., 1964, vol. 12, p. 747.

    Article  Google Scholar 

  69. B. V. N. Rao and J. V. Laukonis: GM Research Publication GMR-4028: “Microstructural Mechanism for the Anomalous Tensile Behavior of Aluminum-Killed Steel Prestrained in Plane-Strain Tension,” GM Research Laboratories, Warren, MI, April 6, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Staff Research Scientist, General Motors Research Laboratories.

Formerly Senior Staff Scientist, General Motors Research Laboratories.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagoner, R.H., Wang, N.M. Operant strain-rate sensitivity during tensile necking. Metall Trans A 14, 2395–2406 (1983). https://doi.org/10.1007/BF02663315

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663315

Keywords

Navigation