Skip to main content
Log in

The interaction of reaction-bonded silicon carbide and inconel 600 with a nickel-based brazing alloy

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The objective of the present research was to join reaction-bonded silicon carbide (RBSC) to INCONEL 600 (a nickel-based superalloy) for use in advanced heat engine applications using either direct brazing or composite interlayer joining. Direct brazing experiments employed American Welding Society (AWS) BNi-5, a commercial nickel-based brazing alloy, as a filler material; composite interlayers consisted of intimate mixtures of α-SiC and BNi-5 powders. Both methods resulted in the liquid filler metal forming a Ni-Si liquid with the free Si in the RBSC, which, in turn, reacted vigorously with the SiC component of the RBSC to form low melting point constituents in both starting materials and Cr carbides at the metal-ceramic interface. Using solution thermodynamics, it was shown that a Ni-Si liquid of greater than 60 at. pct Ni will decompose a-SiC at the experimental brazing temperature of 1200 ‡C; these calculations are consistent with the experimentally observed composition profiles and reaction morphology within the ceramic. It was concluded that the joining of RBSC to INCONEL 600 using a nickel-based brazing alloy is not feasible due to the inevitability of the filler metal reacting with the ceramic, degrading the high-temperature properties of the base materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J.R. McDermid: M.Eng. Thesis, McGill University, Montreal, PQ, CanActa, 1987.

    Google Scholar 

  2. M.G. Nicholas and D.A. Mortimer:Mater. Sci. Tech., 1985, vol. 1, pp. 657–65.

    CAS  Google Scholar 

  3. R.L. Tallman, R.M. Neilson, Jr., J.C. Mittl, S.P. Henslee, and P.V. Kelsey, Jr.: Report No. EGG-SCM-6572, Idaho National Engineering Laboratory, Idaho Falls, ID, March 1984.

    Google Scholar 

  4. G.R. van Houten:Ceram. Bull., 1959, vol. 38 (6), pp. 301–07.

    Google Scholar 

  5. K. Suganuma, T. Okamoto, and M. Kiozumi:J. Mater. Sci. Lett., 1985, vol. 4, pp. 648–50.

    Article  CAS  Google Scholar 

  6. M. Muzhara:Adv. Mater. Proc., 1987, vol. 131 (2), pp. 53–55.

    Google Scholar 

  7. R.L. Mehan and D.W. McKee:J. Mater. Sci., 1976, vol. 11, pp. 1009–18.

    Article  CAS  Google Scholar 

  8. R.L. Mehan and R.B. Bolon:J. Mater. Sci., 1979, vol. 14, pp. 2471–81.

    Article  CAS  Google Scholar 

  9. R.L. Mehan and M. R. Jackson:Mater. Sci. Res., Plenum Press, New York, NY, 1981, vol. 14, pp. 513–23.

    Google Scholar 

  10. M.R. Jackson, R.L. Mehan, A.M. Davis, and E.L. Hall:Metall. Trans. A, 1983, vol. 14A, pp. 355–64.

    Google Scholar 

  11. K. Suganuma, T. Okamoto, M. ShimActa, and M. Kiozumi:J. Amer. Ceram. Soc., 1983, vol. 66, pp. C117-C118.

    Article  CAS  Google Scholar 

  12. J.A. Pask and R.M. Fulrath:J. Amer. Ceram. Soc, 1962, vol. 45, pp. 592–601.

    Article  CAS  Google Scholar 

  13. J.A. Pask and A.P. Tomsia:Mater. Sci. Res., Plenum Press, New York, NY, 1981, vol. 14, pp. 411–19.

    Google Scholar 

  14. C.W. Forest, P. Kennedy, and J.V. Shenan:Special Ceramics 5, British Ceramics Research Association, Stoke-on-Trent, U.K., 1972, pp. 99–123.

    Google Scholar 

  15. B. Cullity:Elements of X-ray Diffraction, 2nd ed., Addison- Wesley, Toronto, ON, CanActa, 1978, pp. 415–17.

    Google Scholar 

  16. ASM Metals Handbook, 9th ed., ASM, Metals Park, OH, 1983, pp. 1014–21.

  17. A.J. Moorhead and H. Keating: Report No. ORNL-6262, Oak Ridge National Laboratory, Oak Ridge, TN, March 1986.

    Google Scholar 

  18. J.L. Bocquet, G. Brebec, and Y. Limoge:Physical Metallurgy; Part I, 3rd ed., Elsevier Science Publishers, New York, NY, 1983, pp. 385–474.

    Google Scholar 

  19. M. Hansen:Constitution of Binary Alloys, 2nd ed., McGraw-Hill Co., New York, NY, 1958, pp. 1039–41.

    Google Scholar 

  20. CRC Handbook of Chemistry and Physics, 62nd ed., R.C. Weast, ed., CRC Press, Inc., Boca Raton, FL, 1981, p. F-53.

    Google Scholar 

  21. O. Kubaschewski and C.B. Alcock:Metallurgical Thermochem- istry, 5th ed., Pergamon Press, Toronto, ON, CanActa, 1979, pp. 408–09.

    Google Scholar 

  22. H.A. Fine and G.H. Geiger:Handbook on Material and Energy Balances in Metallurgical Processes, TMS-AIME, Warrendale, PA, 1979, pp. 402, 477, 480.

    Google Scholar 

  23. K. Negita:J. Amer. Ceram. Soc, 1986, vol. 69 (12), pp. C3O8-C31O.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDermid, J.R., Pugh, M.D. & Drew, R.A.L. The interaction of reaction-bonded silicon carbide and inconel 600 with a nickel-based brazing alloy. Metall Trans A 20, 1803–1810 (1989). https://doi.org/10.1007/BF02663211

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663211

Keywords

Navigation