Skip to main content
Log in

The effect of cooling conditions on the microstructure of rapidly solidified Ti-6Al-4V

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effect of cooling conditions, giving estimated cooling rates in the range 104 °C per second to 107 °C per second, on the microstructure of Ti-6Al-4V has been evaluated. The microstructures of as-solidified particulates were martensitic, with the martensite lath length decreasing with beta grain size,L, which in turn decreased with increasing cooling rate. For material alpha + beta heat-treated or vacuum hot pressed, the alpha morphology was dependent on the prior cooling rate. For materials cooled at <5 × 105 °C per second martensite transformed to lenticular alpha, while material cooled at >5 × 105 °C per second developed an equiaxed alpha morphology. This change in morphology was explained in terms of high dislocation density or grain size refinement, both of which result from the high cooling rate. When the beta grain size (L) was plottedvs section thickness (z), and estimated cooling rate (T), power law relationships analogous to those reported for secondary dendrite arm spacing were found:L = 1.3 ± 0.4z089±006 (thin, chill-substrate quenched),L = 0.17 ± 0.05z0.86±0.01(thick, convection-cooled material), andL = 3.1 × 106 T−0.93±0.12 (all material), whereL and z are in μm andT is in K/s. The last relationship is in agreement with the 0.9 exponent predicted using a model developed for the effect of grain size on cooling rate assuming classical homogeneous nucleation and isotropic linear growth during solidification. The first two relationships were rationalized by assuming that the two materials cooled under near-Newtonian conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Duwez, R. H. Willens, and W. Klement:J. Appl. Phys., 1960, vol. 31, pp. 1136, 1137, and 1500.

    Article  CAS  Google Scholar 

  2. H. Jones:Rapid Solidification of Metals and Alloys, Monograph No. 8, The Institution of Metallurgists, London, 1982.

    Google Scholar 

  3. R. Mehrabian:Int. Met. Rev., 1982, vol. 27, no. 4, p. 185.

    CAS  Google Scholar 

  4. Rapid Solidification Processing: Principles and Technologies II, R. Mehrabian, ed., Claitor’s Publishing Division, Baton Rouge, LA, 1980.

    Google Scholar 

  5. F. H. Froes and J. R. Pickens:JOM, 1984, vol. 36, no. 1, pp. 14–28.

    CAS  Google Scholar 

  6. F. H. Froes, D. Eylon, G. E. Eichelman, and H. M. Burte:JOM, 1980, vol. 32, no. 2, pp. 47–54.

    CAS  Google Scholar 

  7. E. J. Dulis, V. K. Chandhok, F. H. Froes, and L. P. Clark: Proceed- ings 10th National SAMPE Technical Conference, 1978, pp. 316-29.

  8. D. Eylon, F. H. Froes, and L. D. Parsons: Proceedings of the AIAA83, 24th Structures, Structural Dynamics, and Materials Conference, Lake Tahoe, NV, May 1983, pp. 586-93.

  9. L. D. Parsons, J. Bruce, J. Lane, and F. H. Froes:Metal Progress, September 1984, vol. 126, no. 4, pp. 83–94.

    Google Scholar 

  10. F. H. Froes, D. Eylon, and G. Friedman:Metals Handbook, 9th ed., vol. 7, Powder Metallurgy, ASM, Metals Park, OH, 1984, pp. 748–55.

    Google Scholar 

  11. S. M. L. Sastry, T. C. Peng, P. J. Meschter, and J. E. O’Neal:JOM, 1983, vol. 35, no. 9, pp. 21–28.

    CAS  Google Scholar 

  12. S.M. L. Sastry, P.J. Meschter, and J. E.O’Neal: Metall. Trans. A, 1984, vol. 15A, pp. 1451–63.

    Article  CAS  Google Scholar 

  13. S. M. L. Sastry, T. C. Peng, and L. P. Beckerman:Metall. Trans. A, 1984, vol. 15A, pp. 1465–74.

    CAS  Google Scholar 

  14. A. G. Jackson, T. F. Broderick, F. H. Froes, and J. Moteff:Third International Conference on Rapid Solidification Processing, held at National Bureau of Standards, Gaithersburg, MD, December 1982, R. Mehrabian, ed., p. 585.

    Google Scholar 

  15. A. G. Jackson: Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, 1983.

    Google Scholar 

  16. S. Krishnamurthy, R. G. Vogt, D. Eylon, and F. H. Froes:Progress in Powder Metallurgy 1983, H. S. Nayar, S.M. Kaufman, and K. E. Meiners, eds., MPIF, Princeton, NJ, 1984, vol. 39, pp. 603–23.

    Google Scholar 

  17. S. Krishnamurthy, R.G. Vogt, D. Eylon, and F.H. Froes:Rapidly Solidified Metastable Materials, B. H. Kear and B. C. Giessen, eds., Elsevier Science Publishing Co., Inc., New York, NY, 1984, vol. 28, pp. 361–66.

    Google Scholar 

  18. D. G. Konitzer, R. Kirchheim, and H. L. Fraser:Rapidly Solidified Metastable Materials, B.H. Kear and B.C. Giessen, eds., Elsevier Science Publishing Co., Inc., New York, NY, 1984, vol. 28, pp. 381–85.

    Google Scholar 

  19. M. C. Flemings:Solidification Processing, McGraw-Hill, New York, NY, 1974, p. 148.

    Google Scholar 

  20. H. Jones:Rapid Solidification Processing: Principles and Tech- nologies, R. Mehrabian, B.H. Kear, and M. Cohen, eds., Claitor’s Publishing Division, Baton Rouge, LA, 1978, p. 28.

    Google Scholar 

  21. L. Katgerman:Scripta Met., 1980, vol. 14, p. 861.

    Article  CAS  Google Scholar 

  22. J. I. Nurminen and H. D. Brody:Titanium Science and Technology, R. I. Jaffee and H. M. Burte, eds., Plenum Press, New York, NY, 1973, vol. 3, pp. 1893–914.

    Google Scholar 

  23. T. F. Broderick, F. H. Froes, and A. G. Jackson:Rapidly Solidified Metastable Materials, B. H. Kear and B. C. Giessen, eds., Elsevier Science Publishing Co., Inc., New York, NY, 1984, vol. 28, pp. 345–51.

    Google Scholar 

  24. P. G. Boswell and G. A. Chadwick:Scripta Met., 1977, vol. 11, pp. 459–65.

    Article  CAS  Google Scholar 

  25. A. F. Belov and I. S. Polkin: German Metallurgical Society Workshop, University of Nuremberg, Erlangen, July 12, 1982.

  26. E. J. Kosinski:Progress in Powder Metallurgy 1982, James G. Bewley and Sherwood W. McGee, eds., MPIF, Princeton, NJ, 1982, vol. 38, pp. 491–502.

    Google Scholar 

  27. R. E. Maringer, C. E. Mobley, and E. W. Collings:AIChE J., 1978, vol. 74, no. 180, pp. 111–16.

    CAS  Google Scholar 

  28. S. M. L. Sastry, T. C. Peng, P. J. Meschter, and J. E. O’Neal: “Dispersion-Strengthened Powder-Metallurgy Titanium Alloys,” Air Force Wright Aeronautical Laboratories Technical Report No. AFWAL-TR-83-4092, Wright-Patterson AFB, OH, December 1982.

    Google Scholar 

  29. S. J. Savage and F. H. Froes:JOM, 1984, vol. 36, no. 4, pp. 20–33.

    CAS  Google Scholar 

  30. C. F. Yolton, F. H. Froes, and R. F. Malone:Metall. Trans. A, 1979, vol. 10A, pp. 132–34.

    CAS  Google Scholar 

  31. H. I. Aaronson: Carnegie-Mellon University, Pittsburgh, PA, private communication, 1983.

  32. J. P. Hirth: The Ohio State University, Columbus, OH, private com- munication, 1983.

  33. D. Eylon and F. H. Froes:Titanium Alloys in Surgical Implants, H. A. Luckey and F. Kubli, Jr., eds., ASTM Publications, Philadelphia, PA, 1983, pp. 43–58.

    Google Scholar 

  34. F. H. Froes, D. Eylon, G. Wirth, K-J. Grundhoff, and W. Smarsly:Progress in Powder Metallurgy 1982, James G. Bewley and Sherwood W. McGee, eds., MPIF, Princeton, NJ, 1982, vol. 38, pp. 503–20.

    Google Scholar 

  35. I. Weiss, G. E. Welsch, F. H. Froes, and D. Eylon: “Mechanism of Microstructural Refinement in Ti-6Al-4V Alloy”, presented at the Fifth International Conference on Titanium, Munich, West Germany, 10–14 September 1984 and to be published by the German Metal- lurgical Society, 1985.

  36. P. Roberts: Nuclear Metals, Inc., Concord, MA, private commu- nication, 1984.

  37. Y. S. Touloukian and C. Y. Ho:Thermophysical Properties of Matter, IFI Plenum, New York, NY, 1970.

    Google Scholar 

  38. American Institute of Physics Handbook, 3rd ed., D.E. Gray, ed., McGraw-Hill, New York, NY, 1972.

    Google Scholar 

  39. T. W. Clyne and A. Garcia:J. Mater. Sci., 1981, vol. 16, pp. 1643–53.

    Article  CAS  Google Scholar 

  40. B. Cantor:Rapidly Solidified Amorphous and Crystalline Alloys, B.H. Kear, B. C. Giessen, and M. Cohen, eds., Elsevier Science Publishing Co., Inc., New York, NY, 1982, pp. 317–30.

    Google Scholar 

  41. Rapid Solidification Processing: Principles and Technologies, R. Mehrabian, ed., Claitor’s Publishing Division, Baton Rouge, LA, 1978, pp. 9–27.

    Google Scholar 

  42. H. A. Davies:Proceedings of 5th International Conference on Rapidly Quenched Metals, S. Steeb and H. Warlimont, eds., Elsevier, North Holland, New York, NY, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broderick, T.F., Jackson, A.G., Jones, H. et al. The effect of cooling conditions on the microstructure of rapidly solidified Ti-6Al-4V. Metall Trans A 16, 1951–1959 (1985). https://doi.org/10.1007/BF02662396

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02662396

Keywords

Navigation