Skip to main content
Log in

Thermal annealing and electrical activation of high dose gallium imp lanted silicon

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Samples of silicon single crystals implanted with 3 × 1014/ cm2, 1 × 1015/cm2 and 6 × 1015/cm2 Ga ions have been investigated by alpha particle back-scattering before and after annealing, differential Hall effect and ellipsometry measurements. The impurity depth profiles as obtained from the analysis of the back-scattering spectra do not show any long tail of Ga atoms even in the high dose as-implanted samples. Upon annealing, the dopant atom distributions are seen to be modified during recrystallization. High levels of electrical activation of Ga atoms (~3 × 1020 cm-3), exceeding the maximum solid solubility limit of Ga in Si (4.5 × 1019 cm-3) and comparable to those obtained by laser annealing have been achieved by conventional thermal annealing. The above three measurements have clearly shown that there is 20% residual damage in the high dose (6 × 1015 cm2) implanted sample after the recrystallization at about 570°C. This may be related to strain in the lattice at the high concentrations of metastable substitutional Ga atoms. Annealing at higher temperatures reduces the electrical activity of Ga atoms, possibly by driving out the metastable high substitutional concentrations of Ga atoms into electrically inactive clusters or precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Gamo, M. Iwaki, K. Maskuda, S. Namba, S. Ishihara, I. Kimura, I.V. Mitchell, G. Ilic, J.L. Whitton and J.A. Davies, Japan J. Appl. Phys.12, 735 (1973).

    Article  CAS  Google Scholar 

  2. G. Dearnaley, G. A. Gard, W. Temple and M.A. Wilkins, Appl. Phys. Lett.27, 17 (1975).

    Article  CAS  Google Scholar 

  3. H.B. Dietrich, W.H. Weisenberger and J. Comas, Appl. Phys. Lett.28, 182 (1976).

    Article  CAS  Google Scholar 

  4. M.Y. Tsai, B.G. Streetman, V.R. Deline and C.A. Evans, Jr., J. Electron Mater,8, 111 (1979).

    CAS  Google Scholar 

  5. M. Eriksson, J.A. Davies, N.G.E. Johansson and J.W. Mayer, J. Appl. Phys.40, 482 (1969).

    Article  Google Scholar 

  6. C.W. White, S.R. Wilson, B.R. Appleton and F.W. Young Jr., J. Appl. Phys.1, 739 (1980).

    Google Scholar 

  7. J.C. Irvin, Bell Syst. Tech. J.41, 387 (1962).

    CAS  Google Scholar 

  8. B.M. Arora, A. Serdesai and J.M. Castillo (To be published).

  9. K. Watanabe, T. Motooka, N. Hashimoto and T. Tokuyama, Appl. Phys. Lett.36, 451 (1980).

    Article  CAS  Google Scholar 

  10. E. Bøgh, Proc. Roy. Soc.A 311, 35 (1969).

    Google Scholar 

  11. J. Lindhard, M. Schraff and H.E. Schiøtt, Danske Videnskab Selskab, Mat. Fys. Medd.33, No. 14 (1963).

  12. J.W. Mayer, L. Erikson and J.A. Davies,Ion Implantation in Semi-conductors Academic Press (1970).

  13. L.D. Glowinski, P.S. Ho and K.N. Tu,Ion Implantation in Semi-conductors, edited by F. Chernow, J.A. Borders and D.K. Brice, Plenum Press, New York, (1977) p.461.

    Google Scholar 

  14. B.L. Crowder, J. Electrochem Soc.118, 943 (1971).

    Article  CAS  Google Scholar 

  15. P.D. Scovell and J.M. Young, Electro. Lett.16, 614 (1980).

    Article  CAS  Google Scholar 

  16. M.Y. Tsai, F.F. Morehead, J.E.E. Baglin and A.E. Michel, J. Appl. Phys.51, 3230 (1980). $

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, B.M., Castillo, J.M., Kurup, M.B. et al. Thermal annealing and electrical activation of high dose gallium imp lanted silicon. J. Electron. Mater. 10, 845–862 (1981). https://doi.org/10.1007/BF02661003

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02661003

Key words

Navigation