Skip to main content
Log in

Structure/property/continuum synthesis of ductile fracture in inconel alloy 718

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Two microscopic ductile fracture processes have been established in a fracture tough superalloy, Inconel 718, aged to five strength levels. At yield strengths less than 800 MPa, the mechanism is a slow tearing process within large pockets of inhomogeneous carbides and nitrides, giving rise to plane strain fracture toughness (K IC)values greater than 120 MPa-m1/2. At yield strengths greater than 900 MPa, the mechanism involves fracture initiation at carbides and nitrides followed by off crack plane void sheet growth nucleated at the Laves (σ) phases. Here, the fracture toughness drops to about 80 MPa-m1/2. A Mode I normal strain growth model for low yield strength conditions and a shear strain void sheet model for high yield strength ones are shown to model KIC data obtained from a J-integral evaluation of compact tension results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Rice and M. A.Johnson:Inelastic Behavior of Solids, Institute of Materials Science Colloquia, pp. 641-72, 1969.

  2. F. A. McClintock:Ductility, American Soc. for Metals, pp. 255-77, 1967.

  3. F. A. McClintock, S. M. Kaplan, and C. A. Berg:Int. J. FractureMech., 1966, vol. 2, pp. 614–27.

    Google Scholar 

  4. J. R. Rice and D. M. Tracy:J. Mech. Phys. Solids, 1969, vol. 17, pp. 201–17.

    Article  Google Scholar 

  5. F. A. McClintock:Int. J. Fracture Mech., 1968, vol. 4, pp. 107–29.

    Google Scholar 

  6. F. A. McClintock:Physics of Strength and Plasticity, pp. 307-26, M.I.T. press, 1969.

  7. H. C. Rogers:Trans. TMS-AIME, 1960, vol. 218, pp. 363–71.

    Google Scholar 

  8. T. B. Cox and J. R. Low, Jr.:Met. Trans., 1974, vol. 5, pp. 1457–70.

    Article  CAS  Google Scholar 

  9. D. F. Paulonis, J. M. Oblak, and D. S. Duvall:Trans. ASM, 1969, vol. 62, pp. 611–22.

    CAS  Google Scholar 

  10. J. M. Oblak, D. F. Paulonis, and D. S. Duvall:Met. Trans., 1974, vol. 5, p. 143.

    Article  CAS  Google Scholar 

  11. H.J.Wagner and A. M. Hall: DMIC Report 217, 1965.

  12. P. S. Kotval:Trans. TMS-AIME, 1968, vol. 242, p. 1764.

    CAS  Google Scholar 

  13. I. Kirman and D. H. Warrington:Met. Trans., 1970, vol. 1, p. 2667.

    CAS  Google Scholar 

  14. R. F. Decker and J. R. Mikalisin:Trans. ASM, 1969, vol. 62, p. 487.

    Google Scholar 

  15. C. P. Sullivan and M. J. Donochi, Jr.:Metals Eng. Quar., 1971, vol. 11, p. 1.

    CAS  Google Scholar 

  16. C. P. Sims and W. C. Hagel:The Superalloys, pp. 113-43, John Wiley & Sons, 1972.

  17. J. D. Landis and J. A. Begley: ASTM STP 560, pp. 170-86, 1974.

  18. F. A. McClintock:J. Appl. Mech., 1968, vol. 35, pp. 363–71.

    Google Scholar 

  19. A. J. Wang:Quar. Appl. Math., 1953,vol. 11,p.427.

    Google Scholar 

  20. D. M. Tracy: Ph.D. Thesis, Brown University, 1973.

  21. J.W. Hutchinson:.J. Mech. Phys. Solids, 1968, vol. 16, pp. 13–31.

    Article  Google Scholar 

  22. J. W. Hutchinson:J. Mech. Phys. Solids, 1968, vol. 16 pp. 337–47.

    Article  Google Scholar 

  23. P. D. Hilton and J. W. Hutchinson:Eng. Fract. Meeh., 1971, vol. 3, pp. 435–51.

    Article  Google Scholar 

  24. J. R. Rice, P. C.Paris, and J. G. Merkle: ASTM STP 536, pp. 231-45, 1973.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stout, M.G., Gerberich, W.W. Structure/property/continuum synthesis of ductile fracture in inconel alloy 718. Metall Trans A 9, 649–658 (1978). https://doi.org/10.1007/BF02659922

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02659922

Keywords

Navigation