Skip to main content
Log in

Model-based feedback control of deformation processing with microstructure goals

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

A closed-loop feedback scheme for obtaining a goal microstructure during hot isostatic pressing (“hipping”) of powders is described. The control scheme relies on previously developed process models describing the process dynamics during a HIP run and sensors which can measure density and grain size. We use constantly updated linearization and coprime factorization and thus implement the control by convex programming. Simulation results showing the performance of the control scheme are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.L. Anton and D. Shah:J. Miner. Met. Mater. Soc., 1989, vol. 41 (9), pp. 361–68.

    Google Scholar 

  2. E. Arzt:Acta Metall., 1982, vol. 30, pp. 1883–90.

    Article  CAS  Google Scholar 

  3. H.J. Frost and M.F. Ashby:Deformation Mechanism Maps, Pergamon Press, Oxford, United Kingdom, 1982.

    Google Scholar 

  4. A.S. Helle, K.E. Easterling, and M.F. Ashby:Acta Metall., 1985, vol. 33, pp. 2163–71.

    Article  CAS  Google Scholar 

  5. M.F. Ashby:Sintering and Isostatic Pressing Diagrams, Department of Engineering, Cambridge University, Cambridge, United Kingdom, Jan., 1990.

    Google Scholar 

  6. R.L. Eadie, D.S. Wilkerson, and G.C. Weatherley:Acta Metall., 1974, vol. 22, pp. 1185–95.

    Article  Google Scholar 

  7. R.L. Eadie and G.C. Weatherley:Scripta Metall., 1975, vol. 9, pp. 285–94.

    Article  Google Scholar 

  8. J.J. Wlassich, M.F. Ashby, D.R. Blanchard, B.L. Henniges, and D.W. O’Brien:Intelligent Processing of Materials, H.N.G. Wadley and W.E. Eckhart, eds., TMS, Warrendale, PA, 1990, pp. 207–27.

    Google Scholar 

  9. A.H. Kahn, M.L. Hester, and H.H.G. Wadley:Intelligent Processing of Materials, H.N.G. Wadley and W.E. Eckhart, eds., TMSWarrendale, PA, 1990, pp. 293–317.

    Google Scholar 

  10. H.P. Buchkremer, R. Hecker, D. Stover, and H. Raes:Proc. 2nd Int. Conf. on Hot Isostatic Pressing: Theory and Application, ASM INTERNATIONAL, Metals Park, OH, 1991, p. 349.

    Google Scholar 

  11. H.N.G. Wadley and E. Eckhert:J. Met. Oct. 1989, p. 10.

  12. R.W. Brockett:IFAC Congress, 1978, vol. 6, pp. 1115–20.

    Google Scholar 

  13. B. Jakubczyk and W. Respondek:Bull. Acad. Pol. Sci. Ser. Sci. Math., 1980, vol. 28, pp. 517–22.

    Google Scholar 

  14. L.R. Hunt, R. Su, and G. Meyer:Differential Geometric Control Theory, R.W. Brockett, R. Millman, and H. Sussman, eds., Birkhaeuser, Boston, MA, 1983, pp. 268–98.

    Google Scholar 

  15. G. Stein:Applications of Adaptive Control, K. Narendra and R. Monpoli, eds., Academic Press, New York, NY, 1980.

    Google Scholar 

  16. G.F. Franklin, J.D. Powell, and M. Workman:Digital Control of Dynamic Systems, 2nd ed., Addison-Wesley, Reading, MA, 1990.

    Google Scholar 

  17. B.D.O. Anderson and J.B. Moore:Linear Optimal Control, Prentice-Hall, Englewood Cliffs, NJ, 1971.

    Google Scholar 

  18. M. Vidyasagar:Control System Synthesis: The Factorization Approach, MIT Press, Cambridge, MA, 1985.

    Google Scholar 

  19. S.P. Boyd, V. Balakrishnan, C.H. Barratt, N.M. Khraishi, X.M. Li, D.G. Meyer, and S.A. Norman:IEEE Trans. Automat. Contr., 1988, vol. AC-33, pp. 268–84.

    Article  Google Scholar 

  20. T. Kailath:Linear Systems, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1982.

    Google Scholar 

  21. J.C. Willems:IEEE Trans. Automat. Contr., 1971, vol. AC-16, pp. 621–34.

    Article  Google Scholar 

  22. W.F. Arnold and A.J. Laub:Proc. IEEE, 1984, vol. 72, pp. 1746–54.

    Article  Google Scholar 

  23. C.N. Nett, C.A. Jacobsen, and M.J. Balas:IEEE Trans. Automat. Contr., 1984, vol. AC-29, pp. 831–32.

    Article  Google Scholar 

  24. S. Boyd, C. Barratt, and S. Norman:Proc. IEEE, March, 1990, pp. 529–74.

  25. G. Zames:IEEE Trans. Automat. Contr., 1966, vol. AC-11, pp. 228–38.

    Article  Google Scholar 

  26. B.C. Moore:IEEE Trans. Automat. Contr., 1981, vol. AC-26, pp. 17–32.

    Article  Google Scholar 

  27. A. Isidori and C.I. Byrnes:IEEE Trans. Automat. Contr., 1990, vol. AC-35, pp. 131–41.

    Article  Google Scholar 

  28. J. Shamma and M. Athans:IEEE Trans. Automat. Contr., 1990, vol. AC-35, pp. 898–907.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Assistant Professor with the University of Virginia

An increase in temperature or pressure is accomplished by commanding a positive slew; a decrease is accomplished with a negative slew command.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, D.G., Wadley, H.N.G. Model-based feedback control of deformation processing with microstructure goals. Metall Trans B 24, 289–300 (1993). https://doi.org/10.1007/BF02659131

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02659131

Keywords

Navigation