Skip to main content
Log in

Hypoglycaemic effect of AICAriboside in mice

  • Originals
  • Published:
Diabetologia Aims and scope Submit manuscript

Summary

We have previously demonstrated that in isolated hepatocytes from fasted rats, AICAriboside (5-amino 4-imidazolecarboxamide riboside), after its conversion into AICAribotide (AICAR or ZMP), exerts a dose-dependent inhibition on fructose-1,6-bisphosphatase and hence on gluconeogenesis. To assess the effect of AICAriboside in vivo, we measured plasma glucose and liver metabolites after intraperitoneal administration of AICAriboside in mice. In fasted animals, in which gluconeogenesis is activated, AICAriboside (250 mg/kg body weight) induced a 50% decrease of plasma glucose within 15 min, which lasted about 3 h. In fed mice, glucose decreased by 8% at 30 min, and normalized at 1 h. Under both conditions, ZMP accumulated to approximately 2 µmol/g of liver at 1 h. It decreased progressively thereafter, although much more slowly in the fasted state. Inhibition of fructose-1,6-bisphosphatase was evidenced by time-wise linear accumulations of fructose-1,6-bisphosphate, from 0.006 to 3.9 µmol/g of liver at 3 h in fasted mice, and from 0.010 to 0.114 µmol/g of liver at 1 h in fed animals. AICAriboside did not significantly influence plasma insulin or glucose utilization by muscle. We conclude that in vivo as in isolated hepatocytes, AICAriboside, owing to its conversion into ZMP, inhibits fructose-1,6-bisphosphatase and consequently gluconeogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AICAriboside:

5-Amino 4-imidazolecarboxamide riboside

AICAR (ZMP):

5-amino 4-imidazolecarboxamide riboside monophosphate

HMG-CoA:

3-hydroxy-3-methylglutaryl-coenzyme A

Pi:

inorganic phosphate

References

  1. Vincent MF, Marangos PJ, Gruber HE, Van den Berghe G (1991) Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes. Diabetes 40: 1259–1266

    Article  CAS  PubMed  Google Scholar 

  2. Sabina RL, Holmes EW, Becker MA (1984) The enzymatic synthesis of 5-amino-4-imidazolecarboxamide riboside triphosphate (ZTP). Science 223:1193–1195

    Article  CAS  PubMed  Google Scholar 

  3. Sherratt HS (1981) Inhibition of gluconeogenesis by non-hormonal hypoglycaemic compounds. In: Hue L, van de Werve G (eds) Short-term regulation of liver metabolism. Elsevier/North-Holland, Amsterdam, pp 199–227

    Google Scholar 

  4. Wollenberger A, Ristau O, Schoffa G (1960) A simple technique for extremely rapid freezing of large pieces of tissue. Arch Ges Physiol 270:399–412

    Article  CAS  Google Scholar 

  5. Hohorst HJ (1965) L-(+)-Lactate. Determination with lactic dehydrogenase and DPN. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 266–270

    Chapter  Google Scholar 

  6. Lamprecht W, Heinz F (1985) D-Glycerate 2-phosphate and phosphoenol-pyruvate. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 3rd edn, vol 6. Chemi, Weinheim, pp 555–561

    Google Scholar 

  7. Czok R (1985) D-Glycerate 3-phosphate. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 3rd edn, vol 6. Chemie, Weinheim, pp 537–541

    Google Scholar 

  8. Michal G (1985) D-fructose-1,6-diphosphate, dihydroxyacetone phosphate and D-glyceraldehyde-3-phosphate. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 3rd edn, vol 6. Chemie, Weinheim, pp 342–350

    Google Scholar 

  9. Huggett A St G, Nixon DA (1957) Enzymic determination of blood glucose. Biochem J 66:12P

    Google Scholar 

  10. Maes M, Ketelslegers JM, Underwood LE (1983) Low plasma somatomedin-C in streptozotocin-induced diabetes mellitus. Correlation with changes in somatogenic and lactogenic liver binding sites. Diabetes 32:1060–1069

    Article  CAS  PubMed  Google Scholar 

  11. Elliott J, Hems DA, Beloff-Chain A (1971) Carbohydrate metabolism of the isolated perfused liver of normal and genetically obese-hyperglycaemic (ob/ob) mice. Biochem J 125:773–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Assimacopoulos-Jeannet F, Exton JH, Jeanrenaud B (1973) Control of gluconeogenesis and glycogenolysis in perfused livers of normal mice. Am J Physiol 225:25–32

    CAS  PubMed  Google Scholar 

  13. Claus TH, El-Maghrabi MR, Pilkis SJ (1979) Modulation of the phosphorylation state of rat liver pyruvate kinase by allosteric effectors and insulin. J Biol Chem 254:7855–7864

    CAS  PubMed  Google Scholar 

  14. Van Schaftingen E, Hue L, Hers HG (1980) Study of the fructose 6-phosphate/fructose 1,6-bisphosphate cycle in the liver in vivo. Biochem J 192:263–271

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dixon R, Gourzis J, McDermott D, Fujitaki J, Dewland P, Gruber H (1991) AICA-riboside: safety, tolerance and pharmacokinetics of a novel adenosine-regulating agent. J Clin Pharmacol 31:342–347

    Article  CAS  PubMed  Google Scholar 

  16. Menasché P, Jamieson WRE, Flameng W, Davies MK (1995) Acadesine: a new drug that may improve myocardial protection in coronary artery bypass grafting. Results of the first international multicenter study. J Thorac Cardiovasc Surg 110:1096–1106

    Article  PubMed  Google Scholar 

  17. Akkan AG, Malaisse WJ (1994) Insulinotropic action of AICAriboside. I. Insulin release by isolated islets and the perfused pancreas. Diabetes Res 25:13–23

    CAS  PubMed  Google Scholar 

  18. Vincent MF, Bontemps F, Van den Berghe G (1992) Inhibition of glycolysis by 5-amino-4-imidazolecarboxamide riboside in isolated rat hepatocytes. Biochem J 281:267–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Henin N, Vincent MF, Gruber HE, Van den Berghe G (1995) Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase. FASEB J 9:541–546

    CAS  PubMed  Google Scholar 

  20. Salmon DMW, Bowen NL, Hems DA (1974) Synthesis of fatty acids in the perfused mouse liver. Biochem J 142:611–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Buchalter SE, Crain MR, Kreisberg R (1989) Regulation of lactate metabolism in vivo. Diabet Metab Rev 5:379–391

    Article  CAS  Google Scholar 

  22. Rothman DL, Magnusson I, Katz LD, Shulman RG, Shulman GI (1991) Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with13C NMR. Science 254:573–576

    Article  CAS  PubMed  Google Scholar 

  23. Yki-Järvinen H, Helve E, Sane T, Nurjhan N, Taskinen MR (1989) Insulin inhibition of overnight glucose production and gluconeogenesis from lactate in NIDDM. Am J Physiol 256:E732-E739

    PubMed  Google Scholar 

  24. Blackshear PJ, Holloway PAH, Alberti KGMM (1975) Metabolic interactions of dichloroacetate and insulin in experimental diabetic ketoacidosis. Studies on whole animals and after functional hepatectomy. Biochem J 146:447–456

    Article  CAS  Google Scholar 

  25. Pagliara AS, Karl IE, Keating JP, Brown BI, Kipnis DM (1972) Hepatic fructose-1,6-diphosphatase deficiency. A cause of lactic acidosis in infancy. J Clin Invest 51:2115–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morris AAM, Deshpande S, Ward-Platt MP et al. (1995) Impaired ketogenesis in fructose-1,6-bisphosphatase deficiency: a pitfall in the investigation of hypoglycaemia. J Inher Metab Dis 18:28–32

    Article  CAS  PubMed  Google Scholar 

  27. Gitzelmann R, Steinmann B, Van den Berghe G (1995) Disorders of fructose metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th edn. McGraw-Hill, New York, pp 905–934

    Google Scholar 

  28. Sabina RL, Patterson D, Holmes EW (1985) 5-Amino-4-imidazolecarboxamide riboside (Z-riboside) metabolism in eukaryotic cells. J Biol Chem 260:6107–6114

    CAS  PubMed  Google Scholar 

  29. Shafrir E, Berman M, Felig P (1986) The endocrine pancreas: diabetes mellitus. In: Felig P, Baxter JD, Broadus AE, Frohman LA (eds) Endocrinology and metabolism, 2nd edn. McGraw-Hill, New York, pp 1043–1178

    Google Scholar 

  30. Consoli A, Nurjhan N, Capani F, Gerich J (1989) Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes 38:550–557

    Article  CAS  PubMed  Google Scholar 

  31. Mitrakou A, Kelley D, Mokan M et al. (1992) Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. New Engl J Med 326:22–29

    Article  CAS  PubMed  Google Scholar 

  32. Nurjhan N, Consoli A, Gerich J (1992) Increased lipolysis and its consequences on gluconeogenesis in non-insulin-dependent diabetes mellitus. J Clin Invest 89:169–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Magnusson I, Rothman DL, Katz LD, Shulman RG, Shulman GI (1992) Increased rate of gluconeogenesis in type II diabetes mellitus. A13C nuclear magnetic resonance study. J Clin Invest 90:1323–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincent, M.F., Erion, M.D., Gruber, H.E. et al. Hypoglycaemic effect of AICAriboside in mice. Diabetologia 39, 1148–1155 (1996). https://doi.org/10.1007/BF02658500

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02658500

Keywords

Navigation