Skip to main content
Log in

Ductile fracture topography: Geometrical contributions and effects of hydrogen

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A volume element which is deformed becomes elongated and narrowed with increasing strain, for reasons of constant plastic volume; inclusion spacings experience the same changes. Equivalent plasticity expressions permit a description of this effect as a function of fracture strain. Such an effect must be taken into account in comparison of initial inclusion spacings with dimple sizes observed in tensile or toughness specimen fractures. It also plays a role in the assessment of dimple size changes in hydrogen-assisted ductile fracture. The most convenient way to display the effect in the hydrogen case is on a plot of ductility lossvs dimple size ratio. This comparison demonstrates that the geometrical effect generally should lead to large increases in size ratio as ductility decreases; thus the common observations of dimple sizereduction with hydrogen evidently represent large increases in dimple nucleation, while dimple sizeincreases may represent microvoid growth effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. C. Rogers:Ductility, pp. 31-61, ASM, Metals Park, Ohio, 1968.

    Google Scholar 

  2. A. R. Rosenfield:Met. Rev. (No. 121), 1968, vol. 13, pp. 29–40.

    CAS  Google Scholar 

  3. D. Broek:Int. Met. Rev. (sn. 185), 1974, vol. 19, pp. 135–82.

    Google Scholar 

  4. A. W. Thompson and P. F. Weihrauch:ScriptaMet., 1976, vol. 10, pp. 205–10.

    Article  CAS  Google Scholar 

  5. J. M. Barsom and J. V. Pellegrino:Eng. Fract. Mech., 1973, vol. 5, pp. 209–21.

    Article  CAS  Google Scholar 

  6. T. B. Cox and J. R. Low:Met. Tram., 1974, vol. 5, pp. 1457–70.

    Article  CAS  Google Scholar 

  7. G. T. Hahn, C. R. Barnes, and A. R. Rosenfield:Influence of Microstructure and Second Phases on Fracture Toughness, Report ARL TR 75-0194, U.S. Air Force, Wright-Patterson AFB, Ohio, June 1975.

    Google Scholar 

  8. A. W. Thompson:Effect of Hydrogen on Behavior of Materials, pp. 467–77, TMS-AIME, New York, 1976.

    Google Scholar 

  9. I.M. Bernstein, R. Garber, and G. M. Pressouyre:Ibid., pp. 37–57.

  10. A. W. Thompson and I. M. Bernstein:Fracture 0000, vol. 2, pp. 249–54, Univ. Waterloo Press, Waterloo, Ontario, 1977.

    Google Scholar 

  11. A. W. Thompson:Mater. Sci. Eng., 1974, vol. 14, pp. 253–64.

    Article  CAS  Google Scholar 

  12. A. W. Thompson and J. A. Brooks:Met. Trans. A, 1975, vol. 6A, pp. 1431–42.

    Article  CAS  Google Scholar 

  13. C. G. Rhodes and A. W. Thompson:Met. Trans. A, 1977, vol. 8A, pp. 949–54.

    CAS  Google Scholar 

  14. A. W. Thompson: Carnegie-Mellon University, Pittsburgh,PA, unpublished research, 1977.

  15. R. Garber, 1. M. Bernstein, and A. W. Thompson:Scripta Met., 1976, vol. 10, pp. 341–45.

    Article  CAS  Google Scholar 

  16. I. M. Bernstein and A. W. Thompson:Mechanisms of Environment Sensitive Cracking of Materials, pp. 412–24, The Metals Society, London, 1977.

    Google Scholar 

  17. J. E. Hilliard:Trans. TMS-AIME, 1962, vol. 224, pp. 1201–11.

    Google Scholar 

  18. J. Widgery and J.F. Knott:Metal Set, 1978,vol. 12, pp. 8–11.

    Google Scholar 

  19. G. Green and J. F. Knott:J. Eng. Mater. Tech. (Trans. ASME, SeriesH), 1976, vol. 98, pp. 37–46.

    CAS  Google Scholar 

  20. F. A. McClintock:J. Appl. Mech. (Trans. ASME, Series E), 1968, vol. 35, pp.363–71.

    Google Scholar 

  21. D. M. Tracey:Eng. Fracture Mech., 1971, vol. 3, pp. 301–15.

    Article  Google Scholar 

  22. I. E. French and P. F. Weinrich:Met. Trans. A, 1976, vol. 7A, pp. 1841–45.

    CAS  Google Scholar 

  23. C. D. Beachem:J. Basic Eng. (Trans. ASME, Series D), 1965, vol. 87, pp. 299–306.

    CAS  Google Scholar 

  24. D. Broek:Eng. Fract. Mech., 1973, vol. 5, pp. 55–66.

    Article  CAS  Google Scholar 

  25. R. H. Van Stone, R. H. Merchant, and J. R. Low:Fatigue and Fracture Toughness-Cryogenic Behavior (STP 556), pp. 93–124, A.S.T.M., Philadelphia, PA, 1974.

    Google Scholar 

  26. H. C. Burghard:Met. Trans., 1974, vol. 5, pp. 2083–94.

    Article  CAS  Google Scholar 

  27. D. E. Passoja and D. C. Hill:Fractography-Microscopic Cracking Processes (STP 600), pp. 30–46, A.S.T.M., Philadelphia, PA, 1976.

    Google Scholar 

  28. G. Garrett and J. F. Knott:Met. Trans. A, 1978,vol. 9A,pp. 1187–1201.

    Article  CAS  Google Scholar 

  29. D. P. Clausing:Int. J. Fract. Mech., 1970, vol. 6, pp. 71–85.

    Google Scholar 

  30. M. R. Louthan, G. R. Caskey, J. A. Donovan, and D. E. Rawl:Mater. Sci. Eng., 1972, vol. 10, pp. 357–68.

    Article  CAS  Google Scholar 

  31. J. E. Hilliard:Metal Progress, 1964 (May), vol. 85, pp. 99–101.

    Google Scholar 

  32. A. W. Thompson:Metallography, 1972, vol. 5, pp. 366–69.

    Article  Google Scholar 

  33. Garber, I. M. Bernstein, and A. W. Thompson: Carnegie-Mellon University, Pittsburgh, PA, unpublished research, 1976.

  34. C. D. Beachem:Met. Trans., 1972, vol. 3, pp. 437–51.

    CAS  Google Scholar 

  35. H. Cialone and R. J. Asaro:Met. Trans. A, 1979, vol. 10A, pp. 367–75.

    CAS  Google Scholar 

  36. W. M. Robertson: Science Center, Rockwell International, Thousand Oaks, CA, unpublished research, 1976.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, A.W. Ductile fracture topography: Geometrical contributions and effects of hydrogen. Metall Trans A 10, 727–731 (1979). https://doi.org/10.1007/BF02658394

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02658394

Keywords

Navigation