Skip to main content
Log in

The utilization of dissolved organic compounds in aquatic environments

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The uptake of dissolved organic matter by bacteria, phytoplankton and invertebrates is discussed referring to the literature. In natural waters the uptake of dissolved organic compounds appears to be primarily a bacterial process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Albright, L. J. & Wentworth, J. W. 1973. Use of the heterotrophic activity technique as a measure of eutrophication. Environ. Pollut. 5: 59–72.

    Article  CAS  Google Scholar 

  • Allen H. L. 1968. Acetate in fresh water: natural substrate concentrations determined by dilution bioassay. Ecology 49: 346–349.

    Article  Google Scholar 

  • Allen, H. L. 1971. Dissolved organic carbon utilization in sizefractionated algal and bacterial communities. Int. Rev. gesamten. Hydrobiol. 56: 731–749.

    Article  CAS  Google Scholar 

  • Anderson, J. W. & Stephens, G. C. 1969. Uptake of organic material by aquatic invertebrates. VI. Role of epiflora in apparent uptake of glycine by marine crustaceans. Mar. Biol. 4: 243–249.

    Article  CAS  Google Scholar 

  • Anderson, G. C. & Zeutschel R. P. 1970. Release of dissolved organic matter by marine phytoplankton in coastal and off-shore areas of the Northeast Pacific Ocean. Limnol. Oceanogr. 15: 402–407.

    Google Scholar 

  • Antia, N. J., Cheng, J. Y. & Taylor, F. J. R. (1969). The heterotrophic growth of a marine photosynthetic cryptomonad (Chroomonas salina). Proc. Intl. Seaweed Symp. 6: 17–29.

    Google Scholar 

  • Awapara, J. 1962. Free amino acids in invertebrates: a comparative study of their distribution and metabolism. In: Amino Acid Pools. (J. T. Holden, ed.) Elsevier, Amsterdam: pp. 158–175.

    Google Scholar 

  • Azam, F. & Holm-Hansen, O. 1973. Use of tritiated substrates in the study of heterotrophy in sea water. Mar. Biol. 23: 191–196.

    Article  CAS  Google Scholar 

  • Bergmeyer, H. U., editor. 1974 Methods of enzymatic analysis. Vol. 1, Academic Press, New York.

    Google Scholar 

  • Berman, T. 1975. Size fractionation of natural aquatic populations associated with autotrophic and heterotrophic carbon uptake. Mar. Biol. 33: 215–220.

    Article  Google Scholar 

  • Brown, F. S., Baedecker, M. J., Nissenbaum, A. & Kaplan, I. R. 1972. Early diagenesis in a reducing fjord, Saanich Inlet, British Columbia. III. Changes in organic constituents of sediment. Geochim. Cosmochim. Acta 36: 1185–1203.

    Article  CAS  Google Scholar 

  • Bunt, J. S. 1969. Observations on photoheterotrophy in a marine diatom. J. Phycol. 5: 37–42.

    Article  CAS  Google Scholar 

  • Chapman, G. & Taylor, A. G. 1968. Uptake of organic solutes by Nereis virens. Nature 217: 763–764.

    Article  CAS  Google Scholar 

  • Collier, A., Ray, S. M., Magnitzky, A. W. & Bell, J. O. 1953. Effect of dissolved organic substances on oysters. U. S. Fish Wildl. Serv. Fish. Bull. 54: 167–185.

    Google Scholar 

  • Crawford, C. C., Hobbie, J. E. & Webb, K. L. 1974. The utilization of dissolved free amino acids by estuarine microorganisms. Ecology 55: 551–563.

    Article  CAS  Google Scholar 

  • Danforth, W. F. 1962. Substrate assimilation and heterotrophy. In: Physiology and biochemistry of algae. (R. A. Lewin, ed.) Academic Press, New York: pp. 99–123.

    Google Scholar 

  • Dowd, J. E. & Riggs, D. S. 1965. A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations. J. Biol. Chem. 240: 863–869.

    PubMed  CAS  Google Scholar 

  • DuPaul, W. D. & Webb, K. L. 1970. The effect of temperature on salinity induced changes in the free amino acid pool of Mya arenaria. Comp. Biochem. Physiol. 32: 785–801.

    Article  CAS  Google Scholar 

  • Efford, I. A. & Tsumura, K. 1973. Uptake of dissolved glucose and glycine by Pisidium, a fresh water bivalve. Can. J. Zool. 51: 825–832.

    CAS  Google Scholar 

  • Ernst, W. & Goerke, H. 1969. Aufnahme und Umwandlung gelöster Glucose-14C durch Lanice conchilega (Polychaeta, Terebellidae). Veröff. Inst. Meeresforsch Bremerhaven. 11: 313–326.

    Google Scholar 

  • Ferguson, J. C. 1967a. Utilization of dissolved exogenous nutrients by the starfishes, Asterias forbesi and Henricia sanguinolenta. Biol. Bull. 132: 161–173.

    Article  CAS  Google Scholar 

  • Ferguson, J. C. 1967b An autoradiographic study of the utilization of free exogenous amino acids by starfishes. Biol. Bull. 133: 317–329.

    Article  Google Scholar 

  • Ferguson, J. C. 1968. An autoradiographic analysis of the uptake of exogenous glucose by three species of starfishes. Am. Zool. 8: 805.

    Google Scholar 

  • Ferguson, J. C. 1969. Feeding activity in Echinaster and its induction with dissolved nutrients. Biol. Bull. 136: 374–384.

    Article  CAS  Google Scholar 

  • Ferguson, J. C. 1970. An autoradiographic study of the translocation and utilization of amino acids by starfish. Biol. Bull. 138: 14–25.

    Article  CAS  Google Scholar 

  • Ferguson, J. C. 1971. Uptake and release of free amino acids by starfishes. Biol. Bull. 141: 122–129.

    Article  PubMed  CAS  Google Scholar 

  • Fogg, G. E. 1962 Extracellular products. In: Physiology and biochemistry of algae. (R. A. Lewin, ed.) Academic Press, New York: pp. 475–489.

    Google Scholar 

  • Fogg, G. E. 1966. The extracellular products of algae. Oceanogr. Mar. Biol. Ann. Rev. 4: 195–212.

    CAS  Google Scholar 

  • Fontaine, A. R. & Chia, F. S. 1968. Echinoderms: an autoradiographic study of assimilation of dissolved organic molecules. Science 161: 1153–1155.

    Article  CAS  PubMed  Google Scholar 

  • Gocke, K. 1970. Untersuchungen über Abgabe und Aufnahme von Aminosäuren und Polypeptiden durch Planktonorganismen. Arch. Hydrobiol. 67: 285–367.

    Google Scholar 

  • Gocke, K. 1975. Studies on short-term variations of heterotrophic activity in the Kiel Fjord. Mar. Biol. 33: 49–55.

    Article  CAS  Google Scholar 

  • Goreau, T. F., Goreau, N. I. & Yonge, C. M. 1971. Reef corals: autotrophs or heterotrophs?. Biol. Bull. 141: 247–260.

    Article  Google Scholar 

  • Halpern, Y. S. & Even-Shoshan, A. 1967. Properties of the glutamate transport system in E. coli. J. Bacteriol. 93: 1009–1016.

    PubMed  CAS  Google Scholar 

  • Hammen, C. S., Miller Jr., H. F. & Geer, W. H. 1966. Nitrogen excretion of Crassostrea virginica. Comp. Biochem. Physiol. 17: 1199–1200.

    Article  CAS  Google Scholar 

  • Hellebust, J. A. 1965. Excretion of some organic compounds by marine phytoplankton. Limnol. Oceanogr. 10: 192–206.

    Google Scholar 

  • Hellebust, J. A. 1970. The uptake and utilization of organic substances by marine phytoplankters. In: Organic matter in natural waters. (D. W. Hood, ed.) Institute of Marine Science Occasional Publication no. 1: 225–256.

  • Hellebust, J. A. 1971a. Kinetics of glucose transport and growth of Cyclotella cryptica Reimann, Lewin and Guillard. J. Phycol. 7: 1–4.

    Article  CAS  Google Scholar 

  • Hellebust, J. A. 1971b. Glucose uptake by Cyclotella cryptica: dark induction and light inactivation of transport system. J. Phycol. 7: 345–349.

    Article  Google Scholar 

  • Hellebust, J. A. & Guillard, R. R. L. 1967. Uptake specificity for organic substrates by the marine diatom Melosira nummuloides. J. Phycol. 3: 132–136.

    Article  CAS  Google Scholar 

  • Hellebust, J. A. & Lewin, J. C. 1972. Transport systems for organic acids induced in the marine pennate diatom, Cylindrotheca fusiformis. Can. J. Microbiol. 18: 225–233.

    PubMed  CAS  Google Scholar 

  • Hobbie, J. E. & Crawford, C. C. 1969. Bacterial uptake of organic substrate: new methods of study and application to eutrophication. Verh. Internat. Verein. Limnol. 17: 725–730.

    Google Scholar 

  • Hobbie, J. E. & Wright, R. T. 1965. Competition between planktonic bacteria and algae for organic solutes. Mem. Ist. Ital. Idrobiol. Suppl. 18: 175–185.

    Google Scholar 

  • Jägersten, G. 1956. Investigations on Siboglinum ekmani, n. sp., encountered in Skagerrak, with some general remarks on the group Pogonophora. Zool. Bidr. Upps. 31: 211–252.

    Google Scholar 

  • Johannes, R. E., Coward, S. J. & Webb, K. L. 1969. Are dissolved amino acids an energy source for marine invertebrates? Comp. Biochem. Physiol. 29: 283–288.

    Article  CAS  Google Scholar 

  • Johannes, R. E. & Satomi, M. 1967. Measuring organic matter retained by aquatic invertebrates. J. Fish. Res. Board Can. 24: 2467–2471.

    CAS  Google Scholar 

  • Johannes, R. E. & Webb, K. L. 1965. Release of dissolved amino acids by marine zooplankton. Science 150: 76–77.

    Article  CAS  PubMed  Google Scholar 

  • Johannes, R. E. & Webb, K. L. 1970. Release of dissolved organic compounds by marine and freshwater invertebrates. In: Organic Matter in natural waters. (D. W. Hood, ed.). Institute of Marine Science, Occasional publication no. 1: 257–273.

  • Jørgensen, C. B. 1955. Quantitative aspects of filter feeding in invertebrates. Biol. Rev. (Camb.) 30: 391–454.

    Google Scholar 

  • Krogh, A. 1931. Dissolved substances as food of aquatic organisms. Biol. Rev. (Camb.) 6: 412–442.

    Google Scholar 

  • Lewin, J. C. 1953. Heterotrophy in diatoms. J. Gen. Microbiol. 9: 305–313.

    PubMed  CAS  Google Scholar 

  • Lewin, J. C. 1963. Heterotrophy in marine diatoms. In: Symposium on marine microbiology. (C. H. Oppenheimer, ed.) Thomas Publisher. Springfield: pp 229–235.

    Google Scholar 

  • Lewin, J. & Hellebust, J. A. 1970. Heterotrophic nutrition of the marine pennate diatom, Cylindrotheca fusiformis. Can. J. Microbiol. 16: 1123–1129.

    PubMed  CAS  Google Scholar 

  • Lewin, J. & Hellebust, J. A. 1975. Heterotrophic nutrition of the marine pennate diatom Navicula pavillardi Hustedt. Can. J. Microbiol. 21: 1335–1342.

    PubMed  CAS  Google Scholar 

  • Lewin, J. C. & Lewin, R. A. 1960. Auxotrophy and heterotrophy in marine littoral diatoms. Can. J. Microbiol. 6: 127–134.

    PubMed  CAS  Google Scholar 

  • Little, C. & Gupta, B. L. 1968. Pogonophora: uptake of dissolved nutrients. Nature 218: 873–874.

    Article  Google Scholar 

  • Little, C. & Gupta, B. L. 1969. Studies on Pogonophora. III. Uptake of nutrients. J. Exp. Biol. 51: 759–773.

    CAS  Google Scholar 

  • Liu, M. S. & Hellebust, J. A. 1974. Uptake of amino acids by the marine centric diatom Cyclotella cryptica. Can. J. Microbiol. 20: 1109–1118.

    PubMed  CAS  Google Scholar 

  • Lylis, J. C. & Trainor, F. R. 1973. The heterotrophic capabilities of Cyclotella meneghiniana. J. Phycol. 9: 365–369.

    Article  Google Scholar 

  • Munro, A. L. S. & Brock, T. D. 1968. Distinction between bacterial and algal utilization of soluble substances in the sea. J. Gen. Microbiol. 51: 35–42.

    PubMed  CAS  Google Scholar 

  • Nicol, J. A. C. 1967. The biology of marine animals, 2nd edition., Pitman, London.

    Google Scholar 

  • North, B. B. 1975. Primary amines in California coastal waters: utilization by phytoplankton. Limnol. Oceanogr. 20: 20–27.

    CAS  Google Scholar 

  • North, B. B. & Stephens, G. C. 1967. Uptake and assimilation of amino acids by Platymonas. Biol. Bull. 133: 391–400.

    Article  PubMed  CAS  Google Scholar 

  • North, B. B. & Stephens, G. C. 1969. Dissolved amino acids and Platymonas nutrition. Proc. Intl. Seaweed Symp. 6: 263–273.

    Google Scholar 

  • North, B. B. & Stephens, G. C. 1971. Uptake and assimilation of amino acids by Platymonas. II. Increased uptake in nitrogen deficient cells. Biol. Bull. 140: 242–254.

    Article  CAS  Google Scholar 

  • North, B. B. & Stephens, G. C. 1972. Amino acid transport in Nitzschia ovalis Arnott. J. Phycol. 8: 64–68.

    Article  CAS  Google Scholar 

  • Parsons, T. R. 1975. Particulate organic carbon in the sea. In: Chemical Oceanography. Vol. 2 (J. P. Riley, G. Skirrow, eds) 2nd edition. Academic Press, London: pp. 365–383.

    Google Scholar 

  • Parsons, T. R. & Strickland, J. D. H. 1962. On the production of particulate organic carbon by heterotrophic processes in sea water. Deep-Sea Res. 8: 211–222.

    Google Scholar 

  • Pearse, J. S. & Pearse, V. B. 1973. Removal of glycine from solution by the sea urchin Strongylocentrotus purpuratus. Mar. Biol. 19: 281–284.

    Article  CAS  Google Scholar 

  • Péquignat, E. 1970. Biologie des Echinocardium cordatum de la baie de Seine. Forma Functio 2: 121–168.

    Google Scholar 

  • Péquignat, E. 1973. A kinetic and autoradiographic study of the direct assimilation of amino acids and glucose by organs of the mussel Mytilus edulis. Mar. Biol. 19: 227–244.

    Article  Google Scholar 

  • Péquignat, E. & Pujol, J. P. 1968. Absorption cutanée de3H-proline a très faible concentration et son incorporation dans la collagene chez Psammechinus miliaris. Bull. Soc. Linn. Normandie Ser. 10, 9: 209–219.

    Google Scholar 

  • Potts, W. T. W. 1967. Excretion in the molluscs. Biol. Rev. (Camb.) 42: 1–41.

    CAS  Google Scholar 

  • Pütter, A. 1909. Die Ernährung der Wassertiere und der Stoffhaushalt der Gewässer. Fischer, Jena.

    Google Scholar 

  • Rahat, M. & Jahn, T. L. 1965. Growth of Prymnesium paryum in the dark; note on ichtyotoxin formation. J. Protozool. 12: 246–250.

    PubMed  CAS  Google Scholar 

  • Rahat, M. & Spira, Z. 1967. Specificity of glycerol for dark growth of Prymnesium parvum. J. Protozool. 14: 45–48.

    CAS  Google Scholar 

  • Reish, D. J. & Stephens, G. C. 1969. Uptake of organic material by aquatic invertebrates. V. The influence of age on the uptake of glycine-14C by the polychaete Neanthes arenaceodentata. Mar. Biol. 3: 352–355.

    Article  CAS  Google Scholar 

  • Saunders, G. W. 1957. Interrelation of dissolved organic matter and phytoplankton. Bot. Rev. 23: 389–409.

    Article  CAS  Google Scholar 

  • Schlichter, D. 1971. Aktinien nehmen Aminosäuren und Glucose aus dem Meerwasser auf. Naturwissenschaften 58: 455–456.

    Article  CAS  Google Scholar 

  • Schlichter, D. 1973. Ernährungsphysiologische und ökologische Aspekte der Aufnahme in Meerwasser gelöster Aminosäuren durch Anemonia sulcata (Coelenterata, Anthozoa), Oecologia 11: 315–350.

    Article  Google Scholar 

  • Schlichter, D. 1974a. Der Einfluss physikalischer und chemischer Faktoren auf die Aufnahme in Meerwasser gelöster Aminosäuren durch Aktinen. Mar. Biol. 25: 279–290.

    Article  CAS  Google Scholar 

  • Schlichter D. 1974b. Aufnahme im Meerwasser gelöster Aminosäuren durch Anemonia sulcata Pennant. Das unterschiedliche Resorptionsvermögen von Ekto- und Entoderm (Cnidaria). Z. Morphol. Tiere 79: 65–74.

    Article  Google Scholar 

  • Schlichter D. 1974c. Meerwasser als Nahrungsquelle: Aufnahme gelöster organischer Verbindungen. Verhandlungen der Gesellschaft für Okologie, Saarbrücken 1973. Junk B.V., The Hague: 25–38.

    Google Scholar 

  • Schlichter, D. 1975a. Die Bedeuting in Meerwasser gelöster Glucose für die Ernährung von Anemonia sulcata (Coelenterata: Anthozoa). Mar. Biol. 29: 283–293.

    Article  CAS  Google Scholar 

  • Schlichter, D. 1975b. The importance of dissolved organic compounds in sea water for the nutrition of Anemonia sulcata Pennant (Coelenterata). Proc. 9th Europ. mar. biol. Symp.: pp. 395-405.

  • Seki, T. & Otobe, H. 1972. Regional differences on turnover rate of dissolved materials in the Pacific Ocean at summer of 1971. Arch. Hydrobiol. 71: 79–89.

    Google Scholar 

  • Seki, H., Nakai, T. & Otobe, H. 1974. Turnover rate of dissolved materials in the Philippine Sea at winter of 1973. Arch. Hydrobiol. 73: 238–244.

    Google Scholar 

  • Seki, H., Yamaguchi, Y. & Ichimura, S. 1975. Turnover rate of dissolved organic materials in a coastal region of Japan at summer stagnation period of 1974. Arch. Hydrobiol. 75: 297–305.

    CAS  Google Scholar 

  • Sheath, R. G. & Hellebust, J. A. 1974. Glucose transport systems and growth characteristics of Bracteacoccus minor. J. Phycol. 10: 34–41.

    Article  CAS  Google Scholar 

  • Shah, N. M. & Wright, R. T. 1974. The occurrence of glycolic acid in coastal sea water. Mar. Biol. 24: 121–124.

    Article  CAS  Google Scholar 

  • Shick, J. M. 1973. Effects of salinity and starvation on the uptake and utilization of dissolved glycine by Aurelia aurita polyps. Biol. Bull. 144: 172–179.

    Article  CAS  Google Scholar 

  • Shick, J. M. 1975: Uptake and utilization of dissolved glycine by Aurelia aurita scyphistomae: temperature effects on the uptake process; nutritional role of dissolved amino acids. Biol. Bull. 148: 117–140.

    Article  PubMed  CAS  Google Scholar 

  • Shick, J. M. 1976. Free amino acids in Aurelia aurita scyphistomae from Corpus Christi, Texas. Comp. Biochem. Physiol. 53: 1–2.

    CAS  Google Scholar 

  • Sorokin, Yu. I. & Wyshkwarzev, D. I. 1973. Feeding on dissolved organic matter by some marine animals. Aquaculture 2: 141–148.

    Article  Google Scholar 

  • Southward, A. J. & Southward, E. C. 1968. Uptake and incorporation of labeled glycine by pogonophores. Nature 218: 875–876.

    Article  Google Scholar 

  • Southward, A. J. & southward, E. C. 1970. Observations on the role of dissolved organic compounds in the nutrition of benthic invertebrates. Experiments on three species of Pogonophora. Sarsia 45: 69–95.

    Google Scholar 

  • Southward, A. J. & Southward, E. C. 1972a. Observations on the role of dissolved organic compounds in the nutrition of benthic invertebrates. II. Uptake by other animals living in the same habitat as pogonophores, and by some littoral polychaeta. Sarsia 48: 61–70.

    Google Scholar 

  • Southward, A. J. & Southward, E. C. 1972b. Observations on the role of dissolved organic compounds in the nutrition of benthic invertebrates. III. Uptake in relation to organic content of the habitat. Sarsia 50: 29–45.

    Google Scholar 

  • Stanier, R. Y., Palleroni, N. J. & Doudoroff, M. 1966. The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43: 159–271.

    PubMed  CAS  Google Scholar 

  • Stephens, G. C. 1960a. Uptake of glucose from solution by the solitary coral, Fungia. Science 131: 1532.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, G. C. 1960a. Uptake of glucose from solution by the solitary coral, Fungia. Science 131: 1532.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, G. C. 1960b. The mechanism of glucose uptake by the coral, Fungia. Anat. Rec. 137: 395.

    Google Scholar 

  • Stephens, G. C. 1962a. Amino acids in the economy of the bamboo worm, Clymenella torquata. Biol. Bull. 123: 512.

    Article  Google Scholar 

  • Stephens, G. C. 1962b. Uptake of amino acids by the bamboo worm, Clymenella torquata. Biol. Bull. 123: 512.

    Article  Google Scholar 

  • Stephens, G. C., 1962c. Uptake of organic material by aquatic invertebrates. I. Uptake of glucose by the solitary coral, Fungia scutaria. Biol. Bull. 123: 648–659.

    Article  CAS  Google Scholar 

  • Stephens, G. C. 1963. Uptake of organic material by aquatic invertebrates. II. Accumulation of amino acids by the bamboo worm, Clymenella torquata. Comp. Biochem. Physiol. 10: 191–202.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, G. C. 1964. Uptake of organic material by aquatic invertebrates. III. Uptake of glycine by brackish-water annelids. Biol. Bull. 126: 150–162.

    Article  CAS  Google Scholar 

  • Stephens, G. C. 1967. Dissolved organic material as a nutritional source for marine and estuarine invertebrates. In. Estuaries. (G. H. Lauff, ed.) Publication no. 83. AAAS, Washington: pp. 367–373.

    Google Scholar 

  • Stephens, G. C. 1968. Dissolved organic matter as a potential source of nutrition for marine organisms. Am. Zool. 8: 95–106.

    Google Scholar 

  • Stephens, G. C. 1972. Amino acid accumulation and assimilation in marine organisms. In: Nitrogen metabolism and the environment. (J. W. Campbell & L. Goldstein, eds.) Academic press, New York: 155–184.

    Google Scholar 

  • Stephens, G.C. & Kerr, N. S. 1962. Uptake of phenylalanine by Tetrahymena pyriformis Nature 194: 1094–1095.

    Article  CAS  Google Scholar 

  • Stephens, G. C. & North, B. B. 1971. Extrusion of carbon accompanying uptake of amino acids by marine phytoplankters. Limnol. Oceanogr. 16: 752–757.

    CAS  Google Scholar 

  • Stephens, G. C. & Schinske, R. A. 1957. Uptake of amino acids from sea water by ciliary-mucoid filter feeding animals. Biol. Bull. 113: 356–357.

    Google Scholar 

  • Stephens, G. C. & Schinske, R. A. 1958. Amino acid uptake in marine invertebrates. Biol. Bull. 115: 341–342.

    Google Scholar 

  • Stephens, G. C. & Schinske, R. A. 1961. Uptake of amino acids by marine invertebrates. Limnol. Oceanogr. 6: 175–181.

    Google Scholar 

  • Stephens, G. C. & Virkar, R. A. 1965. Accumulation and assimilation of amino acids by the brittle star. Ophiactis simplex. Am. Zool. 5: 661.

    Google Scholar 

  • Stephens, G. C. & Virkar, R. A. 1966. Uptake of organic material by aquatic invertebrates. IV. The influence of salinity on the uptake of amino acids by the brittle star, Ophiactis arenosa. Biol. Bull. 131: 172–185.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, A. G. 1969. The direct uptake of amino acids and other small molecules from sea water by Nereis virens. Comp. Biochem. Physiol. 29: 243–250.

    Article  CAS  Google Scholar 

  • Taylor, F. J. 1960a. The absorption of glucose by Scenedesmus quadricauda. I. Some kinetic aspects. Proc. R. Soc. (London) B 151: 400–418.

    CAS  Google Scholar 

  • Taylor, F. J. 1960b. The absorption of glucose by Scenedesmus quadricauda. II. The nature of the absorptive process. Proc. R. Soc. (London) B 151: 483–496.

    CAS  Google Scholar 

  • Testerman, J. K. 1972. Accumulation of free fatty acids from sea water by marine invertebrates. Biol. Bull. 142: 160–177.

    Article  PubMed  CAS  Google Scholar 

  • Virkar, R. A. 1963. Amino acids in the economy of the sipunculid worm, Golfingia gouldii. Biol. Bull. 125: 396–397.

    Google Scholar 

  • Watt, W. D. 1966. Release of dissolved organic material from the cells of phytoplankton populations. Proc. R. Soc. (London) B 164: 521–551.

    Article  CAS  Google Scholar 

  • Webb, K. L. & Johannes, R. E. 1967. Studies on the release of dissolved free amino acids by marine zooplankton. Limnol. Oceanogr. 12: 376–382.

    CAS  Google Scholar 

  • Webb, K. L. & Johannes, R. E. 1969. Do marine crustaceans release dissolved amino acids?. Comp. Biochem. Physiol. 29: 875–878.

    Article  CAS  Google Scholar 

  • Webb, K. L., Johannes, R. E. & Coward, S. J. 1971. Effects of salinity and starvation on release of dissolved free amino acids by Dugesia dorotocephala and Bdelloura candida (Platyhelminthes, Turbellaria). Biol. Bull. 141: 364–371.

    Article  CAS  Google Scholar 

  • Webb, K. L., Schimpf, A. L. & Olmon, J. 1972. Free amino acid composition of scyphozoan polyps of Aurelia aurita, Chrysaora quinquecirrha and Cyanea capillata at various salinities. Comp. Biochem. Physiol. 43B: 653–663.

    Article  CAS  Google Scholar 

  • Wheeler, P. A., North, B. B. & Stephens, G. C. 1974. Amino acid uptake by marine phytoplankters. Limnol. Oceanogr. 19: 249–259.

    Article  CAS  Google Scholar 

  • White, A. W. 1974a. Growth of two facultatively heterotrophic marine centric diatoms. J. Phycol. 10: 292–300.

    Article  Google Scholar 

  • White, A. W. 1974b. Uptake of organic compounds by two facultatively heterotrophic marine centric diatoms. J. Phycol. 10: 433–438.

    Article  CAS  Google Scholar 

  • Williams, P. J. LeB. 1970. Heterotrophic utilization of dissolved organic compounds in the sea. I. Size distribution of population and relationship between respiration and incorporation of growth substrates. J. Mar. Biol. Assoc. U.K. 50: 859–870.

    Article  CAS  Google Scholar 

  • Williams, P. J. LeB. 1973. The validity of the application of simple kinetic analysis to heterogeneous microbial populations. Limnol. Oceanogr. 18: 159–165.

    Google Scholar 

  • Williams, P. J. LeB. 1975. Biological and chemical aspects of dissolved organic material in sea water. In: Chemical Oceanography. Vol. 2 (J. P. Riley & G. Skirrow, eds). 2nd edition. Academic Press. London: pp. 301–363.

    Google Scholar 

  • Wright, R. T. 1970. Glycollic acid uptake by planktonic bacteria. In: Organic matter in natural waters. (D. W. Hood, ed.) Institute of Marine Science, Occasional publication no. 1: pp. 521–536.

  • Wright, R. T. & Hobbie, J. E. 1966. Use of glucose and acetate by bacteria and algac in aquatic ecosystems. Ecology 47: 447–464.

    Article  CAS  Google Scholar 

  • Wright, R. T. & Shah, N. M. 1975. The trophic role of glycolic acid in coastal sea water. I. Heterotrophic metabolism in sea-water and bacterial cultures. Mar. Biol. 33: 175–183.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communication nr. 145 of the Delta Institute for Hydrobiological Research, Yerseke, The Netherlands

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sepers, A.B.J. The utilization of dissolved organic compounds in aquatic environments. Hydrobiologia 52, 39–54 (1977). https://doi.org/10.1007/BF02658081

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02658081

Keywords

Navigation