Skip to main content
Log in

Dislocation profiles in HgCdTe(100) on GaAs(100) grown by metalorganic chemical vapor deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We studied dislocation etch pit density (EPD) profiles in HgCdTe(lOO) layers grown on GaAs(lOO) by metalorganic chemical vapor deposition. Dislocation profiles in HgCdTe(lll)B and HgCdTe(lOO) layers differ as follows: Misfit dislocations in HgCdTe(lll)B layers are concentrated near the HgCdTe/CdTe interfaces because of slip planes parallel to the interfaces. Away from the HgCdTe/CdTe interface, the HgCdTe(111)B dislocation density remains almost constant. In HgCdTe(lOO) layers, however, the dislocations propagate monotonically to the surface and the dislocation density decreases gradually as dislocations are incorporated with increasing HgCdTe(lOO) layer thicknesses. The dislocation reduction was small in HgCdTe(lOO) layers more than 10 μm from the HgCdTe/CdTe interface. The CdTe(lOO) buffer thickness and dislocation density were similarly related. Since dislocations glide to accommodate the lattice distortion and this movement increases the probability of dislocation incorporation, incorporation proceeds in limited regions from each interface where the lattice distortion and strain are sufficient. We obtained the minimum EPD in HgCdTe(100) of 1 to 3 x 106 cm-2 by growing both the epitaxial layers more than 8 μm thick.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Mullin and S.J.C. Irvine,J. Phys. D:Appl. Phys. 14,149 (1981).

    Article  Google Scholar 

  2. S.K. Ghandhi, I.B. Bhat and N.R. Tasker,J. Appl. Phys. 59, 2253 (1986).

    Article  CAS  Google Scholar 

  3. S.J.C. Irvine, J. Tunnicliffe and J.B. Mullin,Mater. Lett. 2, 305 (1984).

    Article  CAS  Google Scholar 

  4. J. Tunnicliffe, S.J.C. Irvine, O.D. Dosser and J.B. Mullin,J. Cryst. Growth 68, 245 (1984).

    Article  CAS  Google Scholar 

  5. S.K. Ghandhi, I.B. Bhat and H. Fardi,Appl. Phys. Lett. 52, 392 (1988).

    Article  CAS  Google Scholar 

  6. D.D. Edwall, J. Bajaj and E.R. Gertner,J. Vac. Sci. Technol. A8,1045 (1990).

    Google Scholar 

  7. S. Murakami, Y. Sakachi, H. Nishino, T. Saito, K. Shinohara and H. Takigawa,J. Vac. Sci. Technol. B10, 1380 (1992).

    Google Scholar 

  8. D.D. Edwall,J. Electron. Mater. 22, 847 (1993).

    CAS  Google Scholar 

  9. W.E. Hoke,P.J. Lemonias and R. Traczewki,Appl. Phys. Lett. 44, 1046 (1984).

    Article  CAS  Google Scholar 

  10. H.A. Mar, K.T. Chee and N. Salansky,Appl. Phys. Lett. 44, 237 (1984).

    Article  Google Scholar 

  11. R. Korenstein, P. Hailock, B. MacLeod, W. Hoke and S. Oguz,J. Appl. Phys. 62, 4929 (1987).

    Article  CAS  Google Scholar 

  12. J. Elliott and V.G. Kreismanis,J. Vac. Sci. Technol. B 10, 1429(1992).

    Google Scholar 

  13. C.D. Maxey, P. Capper, P.A.C. Whiffin, B.C. Easton, I. Gale, J.B. Clegg and A. Harker,Mater. Lett. 8, 385 (1989).

    Article  CAS  Google Scholar 

  14. S.K. Ghandhi, N.R. Taslier, K.K. Parat and L.B. Bhat,Appl. Phys. Lett. 57, 252 (1990).

    Article  CAS  Google Scholar 

  15. R. Korenstein, P. Hailock, B. MacLeod, W. Hoke and S. Oguz,J. Vac. Sci. Technol. A8,1039 (1990).

    Google Scholar 

  16. S.M. Johnson, D.R. Rhiger, J.P. Rosbeck, J.M. Peterson, S.M. Taylor and M.E. Boyd,J. Vac. Sci. Technol. B10, 1499(1992).

    Google Scholar 

  17. M. Yoshikawa, K Maruyama, T. Saito, T. Maekawa and H. Takigawa,J. Vac. Sci. Technol. A5, 3052 (1987).

    Google Scholar 

  18. H. Takigawa, M. Yoshikawa and T. Maekawa,J. Cryst. Growth 86, 446(1988).

    Article  CAS  Google Scholar 

  19. H. Takigawa,Ext. Abs. 1992 U.S. Workshop on the Physics and Chemistry of Mercury Cadmium Telluride and Other IR Materials, (1992), p. 111.

  20. R.D. Feldman, R.P. Austin, D.W. Kisker, K.S. Jeffers and P.M. Bridenbaugh,Appl. Phys. Lett. 48, 248 (1986).

    Article  CAS  Google Scholar 

  21. R. Srinivasa, M.B. Panish and H. Temkin,Appl. Phys. Lett. 50, 1441 (1987).

    Article  CAS  Google Scholar 

  22. H. Takigawa, H. Nishino, T. Saito, S. Murakami and K. Shinohara,J. Cryst. Growth 117, 28 (1992).

    Article  CAS  Google Scholar 

  23. P.L. Anderson,J. Vac. Sci. Technol. A4, 2162 (1986).

    Google Scholar 

  24. S.H. Shin, J.M. Arias, D.D. Edwall, M. Zandian, J.G. Pasko and R.E. DeWames,J. Vac. Sci. Technol. B10, 1492 (1992).

    Google Scholar 

  25. Z. Feng and H. Liu,J. Appl. Phys. 54, 83 (1983).

    Article  CAS  Google Scholar 

  26. S.N.G. Chu, A.T. Macrander, K.E. Strege and W.D. Johnston, Jr.,J. Appl. Phys. 57, 249 (1985). $

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishino, H., Murakami, S., Saito, T. et al. Dislocation profiles in HgCdTe(100) on GaAs(100) grown by metalorganic chemical vapor deposition. J. Electron. Mater. 24, 533–537 (1995). https://doi.org/10.1007/BF02657959

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02657959

Key words:

Navigation