Skip to main content
Log in

Modeling of spray deposition: Measurements of particle size, gas velocity, particle velocity, and spray temperature in Gas-Atomized sprays

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

Spray deposition is a novel manufacturing process which is currently being developed for producing near-net-shape preforms. Spray deposition involves the creation of a spray of droplets by a gas atomizer and the consolidation of these droplets on a substrate to create a preform. In order to maximize the metallurgical benefits of spray deposition, a thorough characterization of momentum and heat transfer in the gas-atomized spray is required. The present paper describes measurements of particle size, gas velocity, particle velocity, and spray temperature in gasatomized Sn-Pb sprays. Measurements were performed on steady-state axisymmetric sprays which were generated using a close-coupled gas atomizer with Sn-5 wt p t Pb and Sn-38 wt p t Pb alloys, atomizer gas flow rates of 2.5 g/s (0.56 MPa) and 3.4 g/s (1.04 MPa), melt flow rates of 35 and 61 g/s, and atomizer-substrate distances of 180 and 360 mm. Gas velocities in the range to 4 m/s were measured using Pitot tube and laser Doppler anemometry (LDA). Droplet velocities in the range 3 to 32 m/s were determined from photographic streak-length measurements and LDA. Oil calorimetry of the spray enthalpy indicated that the spray temperature decreased with increasing axial distance from the gas atomizer, increasing gas flow rate, and decreasing melt flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.G. Brooks, C. Moore, A.G. Leatham, and J.S. Coombs:Metall. Met. Form., 1977, vol. 44, pp. 157–63.

    CAS  Google Scholar 

  2. B.A. Rickinson, F.A. Kirk, and D.R.G. Davies:Powder Metall., 1981, vol. 24 (1), pp. 1–6.

    CAS  Google Scholar 

  3. R.H. Bricknell:Metall. Trans. A, 1986, vol. 17A, pp. 583–91.

    CAS  Google Scholar 

  4. H.C. Fiedler, T.F. Sawyer, and R.W. Koop: CRD Report No. 85CRD073, General Electric Co., Schenectady, NY, 1985.

    Google Scholar 

  5. H.C. Fiedler, T.F. Sawyer, and R.W. Koop: CRD Report No. 86CRD113, General Electric Co., Schenectady, NY, 1986.

    Google Scholar 

  6. A.R.E. Singer:Metall. Mater., 1970, vol. 4, pp. 246–57.

    Google Scholar 

  7. P.J. Read, K.J. Latimer, T.D.W. Reynolds, and D. Munson: British Patent No. 1431895, 1976.

  8. E.J. Lavernia, G. Rai, and N.J. Grant:Int. J. Powder Metall., 1986, vol. 22 (1), pp. 9–16.

    CAS  Google Scholar 

  9. R.E. Lewis, J.M. Fitzpatrick, D.D. Crooks, A.R.E. Singer, and W.N. Jenkins: SAE Technical Paper Series No. 841514, Aerospace Congress and Exposition, Long Beach, CA, Oct. 1984.

  10. C.A. Wilson, D.W. Gasson, and R. Avery: British Patent No. 1531222, 1978.

  11. A.R.E. Singer and S. Ozbek:Powder Metall., 1985, vol. 28 (2), pp. 72–78.

    CAS  Google Scholar 

  12. E.A. Feest: U.K. Patent Application No. 2172826, 1986.

  13. A.G. Gillen and B. Cantor:Ada Metall., 1985, vol. 33 (10), pp. 1813–21.

    Article  CAS  Google Scholar 

  14. B.P. Bewlay and B. Cantor:Int. J. Rapid Solidification, 1987, vol. 3, pp. 30–37.

    Google Scholar 

  15. J. Mishin, M. Vardelle, J. Lesinski, and P. Fauchais:J. Phys. E, 1986, vol. 20, pp. 620–25.

    Article  Google Scholar 

  16. P. Mathur and D. Apelian: Drexel University, Philadelphia, PA, unpublished research, 1987.

  17. P. Mathur, D. Apelian, and A. Lawley:Acta Metall., 1989, vol. 37 (2), pp. 429–43.

    Article  CAS  Google Scholar 

  18. A.R.E. Singer, J.S. Coombs, and A.G. Leatham: inModern Developments in Powder Metallurgy, H.H. Hausner and W.E. Smith, eds., Plenum Press, New York, NY, 1974, vol. 8, pp. 263–74.

    Google Scholar 

  19. M.H. Kim and H. Jones: inRapidly Quenched Metals, T. Masumoto and H. Suzuki, eds., The Japan Institute of Metals, Sendai, 1982, pp. 85–93.

    Google Scholar 

  20. N.P. Smith, J.O.W. Noms, D.J. Hemsley, and M.L. Yeoman: inProc., Int. Conf. on Liquid Atomization and Spraying Systems, London, 1985.

  21. B.P. Bewlay: D. Phil. Thesis, University of Oxford, Oxford, United Kingdom, 1987.

    Google Scholar 

  22. B.P. Bewlay and B. Cantor:Mater. Sci. Eng., 1989, vol. 118, pp. 207–22.

    Article  Google Scholar 

  23. Y.S. Touloukian:Thermophysical Properties of Matter, Plenum Press, New York, NY, 1970, vol. 4.

    Google Scholar 

  24. K.P. Rao and S.P. Mehotra: inModern Developments in Powder Metallurgy, H. Hausner, ed., Plenum Press, New York, NY, 1980, vol. 2, pp. 113–22.

    Google Scholar 

  25. S.P. Mehotra and P.Y. Kedhar:Trans. Indian Inst. Met., 1980, vol. 33, pp. 361–69.

    Google Scholar 

  26. H. Lubanska:J. Met., 1970, vol. 22, pp. 45–49.

    CAS  Google Scholar 

  27. J.S. Thompson:J. Inst. Met., 1948, vol. 74, pp. 101–32.

    Google Scholar 

  28. U.R. Date, G.S. Tendolkar, and M.N. Vartak:Int. J. Powder Metall., 1967, vol. 3 (2), pp. 49–62.

    CAS  Google Scholar 

  29. S.L. Shinde and G.S. Tendolkar:Powder Metall. Int., 1977, vol. 9 (4), pp. 180–85.

    CAS  Google Scholar 

  30. Smithells Metals Reference Book, 6th ed., E.A. Brandes, ed., Butterworth’s, London, 1983, Sec. 14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Doctoral Student, Department of Metallurgy and Science of Materials, Oxford University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bewlay, B.P., Cantor, B. Modeling of spray deposition: Measurements of particle size, gas velocity, particle velocity, and spray temperature in Gas-Atomized sprays. Metall Trans B 21, 899–912 (1990). https://doi.org/10.1007/BF02657816

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02657816

Keywords

Navigation