Skip to main content
Log in

Pharmacokinetic determination of relative potency of quinolone inhibition of caffeine disposition

  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Summary

Quinolone is reported to interact with caffeine, often resulting in an increase both in the plasma half-life and AUC, a decrease in total plasma clearance, and little change in the absorption rate constant and maximum plasma level. These complex changes in the pharmacokinetics of caffeine were analyzed experimentally and from published reports in order to determine the nature of the interaction, which is thought to be due to inhibition of caffeine metabolism by quinolones.

A simple pharmacokinetic model for the caffeine-quinolone interaction was developed, which provides a unified method for evaluation and comparison of the effect of quinolones on the disposition of caffeine.

The model is applicable to other methylxanthines, such as theophylline. The relative potency of the interactions of quinolones with caffeine in humans has been established as enoxacin (100), pipemidic acid (29), ciprofloxacin (11), norfloxacin (9) and ofloxacin (0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arcieri G, Griffith E, Gruenwaldt G, Heyd A, O’Brien B, Screen P, Becker N, August R (1988) A survey of clinical experience with ciprofioxacin, a new quinolone antimicrobial. J Clin Pharmacol 28:179–189

    PubMed  CAS  Google Scholar 

  • Benet LZ, Sheiner LB (1985) Appendix II, Pharmacokinetic con- stants. In: Gilman AG, Goodman LS, Rall TW, Murad M (eds) Goodman and Gilman’s the pharmacological basis of therapeu- tics, 7th ed. MacMillan, New York, p 1673

    Google Scholar 

  • Beckman J, ElsaberW, Gundert-Remy U, Hertramp fR (1988) Enoxacin, a potent inhibitor of theophylline metabolism. Eur J Clin Pharmaco1 35:161–165

    Article  Google Scholar 

  • Berman M, Weiss MF (1975) SAAM Manual, Berman M, Beltz W, Greif P, ChabayR, Boston R (eds) ConSam User’s Guide. c/o L. A. Zech, Rm 4B56, Bldg 10, Laboratory of Mathematical Biol- ogy, NCI, National Institutes of Health, Bethesda MD 2089

  • Blanchard J, Sawers SJA (1982) The absolute bioavailability of caf- feine in man. Eur J Clin Pharmaco1 32:98–106

    Google Scholar 

  • Campoli-Richards DB, Monk JR Price A (1988) Ciprofloxacin: a re- view of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 35:373–347

    PubMed  CAS  Google Scholar 

  • Carbó M, Segura J, de la Torre R, Cami J, Badenas J (1989) Effect of quinolones on caffeine disposition. Clin Pharmacol Therap 45: 234–240

    Article  Google Scholar 

  • Davies BI, Maesens FPV, Baur C (1987) Ciprofloxacin in the treat- ment of acute exacerbations of chronic bronchitis. Eur J Clin Microbiol i: 226–231

    Google Scholar 

  • Edward D, Bowles S, Svensson C, Rybak M (1988) Inhibition of drug metabolism by quinolone antibiotics. Clin Pharmacokin 15: 194–204

    Google Scholar 

  • Gibaldi M, Perrier D (1982) Pharmacokinetics, 2. ed., Marcel Dek- ker, New York

    Google Scholar 

  • Harder S, Staib AH, Beer C, Papenburg A, Stille W, Shah PM (1988) 4-Quinolones inhibit biotransformation of caffeine. Eur J Clin Pharmaco1 35:651–656

    Article  CAS  Google Scholar 

  • Ho G, Tierney M, Dales R (1988) Evaluation of the effect of nor- floxacin on the pharmacokinetics theophylline. Clin Pharmacol Ther 44:35–38

    Article  PubMed  CAS  Google Scholar 

  • Holmes B, Brogen RN, Richards DM (1985) Norfloxacin: A review of its antibacterial activity, pharmacokinetic properties and its therapeutic use. Drugs 30:482–513

    PubMed  CAS  Google Scholar 

  • Khan F, Raoof S (1985) Ciprofloxacin in the treatment of respir- atory tract infections. Proceedings of first Symposium of Cipro- floxacin. Leverkussen. Excerpta Medica, Amsterdam, pp 252–256

    Google Scholar 

  • Nix DE, Schentag JJ (1988) The quinolones: An overview and com- parative appraisal of their pharmacokinetics and pharmacody- namics. J Clin Pharmaco1 28:169–178

    CAS  Google Scholar 

  • Nix DE, DeVito JM, Whitbread MA, Schentag JJ (1987) Effect of multiple dose oral ciprofloxacin on the pharmacokinetics of theo- phylline and indocyanine green. J Antimicrob Chemother 19: 263–269

    Article  PubMed  CAS  Google Scholar 

  • Rall TW (1985) The methylxanthines. In: Gilman AG, Good- man LS, Rall TW, Murad M (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, 7th ed. MacMillan, New York, p 589–503

    Google Scholar 

  • Ramirez-Ronda C, Colon M, Saavedra S, Sabbaj J, Corrado ML (1987) Treatment of urinary tract infections with norfloxacin. Am J Med 82: 75–78

    Article  PubMed  CAS  Google Scholar 

  • Raoof S, Wollschlager C, Knan F (1985) Serum theophylline levels are increased by ciprofloxacin, a new quinolone antibiotic. Chest 32(S):88

    Google Scholar 

  • Rogge MC, Solomon WR, Sedman AJ, Welling PG, Toothaker RD, Wagner JG (1988) The theophylline enoxacin interaction: I. Effect of enoxacin dose size on theophylline disposition. Clin Pharmacol Ther 44:579–587

    Article  PubMed  CAS  Google Scholar 

  • Rowland M, Martin S (1973) Kinetics of drug-drug interactions. J Pharmacokin Biopharm 1: 553–567

    Article  CAS  Google Scholar 

  • San Jose Valverde L, Dominguez AR, Garcia A, Rodriguez M, Blanco JG (1986) Efectos del acido pipemidico sobre el acla- ramiento de teofilinas. Rev Esp Allergol Immunol Clin 1:14–16

    Google Scholar 

  • Sano M, Yamamoto I, Ueda J, Yokishawa H, Yamashima H, Goto M (1987) Comparative pharmacokinetics of theophylline following two fluoroquinolones coadministration. Eur J Clin Pharmaco1 32:431–432

    Article  CAS  Google Scholar 

  • Sano M, Kawakatsu K, Ohkita C, Yamamoto I, Takeyama M, Yamashina H, Goto M (1988) Effects of enoxacin, ofloxacin and norfloxacin on theophylline disposition in humans. Eur J Clin Pharmaco1 35:161–165

    Article  CAS  Google Scholar 

  • Shaw PN, Houston JB (1987) Kinetics of drug metabolism inhibi- tion; Use of metabolite concentration-time profiles. J Pharmaco- kinet Biopharm 15:497–510

    Article  CAS  Google Scholar 

  • Shimizu M, Nakamura S, TakaseY, Kurobe N (1975) Pipemidic acid: absorption, distribution and excretion. Antimicrob Agents Chemother 7:441446

    Google Scholar 

  • Simpson KJ, Brodie MJ (1985) Convulsions related to enoxacin. Lancet II: !61

    Google Scholar 

  • Staib AH, Harder S, Mieke S, Beer C, Stille W, Shah P (1987) Gy-rase-inhibitors impair caffeine elimination in man. Methods Find Exp Clin Pharmacol 9:193–198

    PubMed  CAS  Google Scholar 

  • Thomson AH, Thomson GD, Hepburn M, Withing B (1987) A clinically significant interaction between ciprofloxacin and theo- phylline. Eur J Clin Pharmaco1 33:435436

    Google Scholar 

  • Van der Willigen AH, Van der Hoek JCS, Wagenvoort JHT (1987) Comparative double-blind study of 200 and 400 mg enoxacin given orally in the treatment of acute uncomplicate urethral gonorrhea in males. Antimicrob Agents Chemother 7: 535–538

    Google Scholar 

  • Wijnands WJA, van Herwaarden CLA, Vree TB (1984) Enoxacin raises plasma theophylline concentrations. Lancet II: 108

    Article  Google Scholar 

  • Wijnands WJA, Vree TB, Van Herwaarden CLA (1986) The in- fluence of quinolone derivatives on theophylline clearance. Br J Clin Pharmaco1 22: 67–683

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnett, G., Segura, J., de la Torre, R. et al. Pharmacokinetic determination of relative potency of quinolone inhibition of caffeine disposition . Eur J Clin Pharmacol 39, 63–69 (1990). https://doi.org/10.1007/BF02657060

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02657060

Key words

Navigation