Skip to main content
Log in

Fracture toughness behavior of ex-service 2-1/4Cr-1Mo steels from a 22-year-old fossil power plant

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Elevated-temperature fracture toughness properties were developed on ex-service 2-l/4Cr-1Mo steel weldments. Fracture toughness was measured on both base and heat-affected zone (HAZ) metals. A composite specimen consisting of base, HAZ, and weld metals was used to develop fracture toughness properties in the HAZ area. It was observed that the J-R curve of the HAZ was significantly lower than that of the base metal. Increasing crack extension increased the difference between theJ-R curves of the base metal and the HAZ. Dimpled fracture was the prime fracture mode in the base metal specimen, and a mixed-mode (ductile and “granular”) fracture was found in the HAZ specimens. Scanning transmission electron microscopy (STEM) examination revealed significant intergranular carbide precipitation and agglomeration within the HAZ. The lower fracture toughness of the HAZ, as compared to the base metal, was attributed to the large accumulation of carbides in the grain boundaries of the HAZ, which weakened the grain boundaries and caused “granular” fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.K. Liaw and A. Saxena:Remaining-Life Estimation of Boiler Pressure Parts-Crack Growth Studies, EPRI CS-4688, Project 2253-7, Final Report, July 1986.

  2. Proc. Electric Power Research Institute (EPRI) Conf. on Life Extension and Assessment of Fossil Plants, sponsored by EPRI, Edison Electric Institute (EEI), ASME, and ASM, Washington, DC, June 2–4, 1986.

  3. W.A. Logsdon, P.K. Liaw, A. Saxena, and V.E. Hulina:Eng. Fract. Mech., 1986, vol. 25, p. 259.

    Article  Google Scholar 

  4. A. Saxena, P.K. Liaw, W.A. Logsdon, and V.E. Hulina:Eng. Fract. Mech., 1986, vol. 25, p. 289.

    Article  Google Scholar 

  5. V.P. Swaminathan, N.S. Cheruvu, A. Saxena, and P.K. Liaw:An Initiation and Propagation Approach for the Life Assessment of an HP-IP Rotor, Proc. EPRI Conf. on Life Extension and Assessment of Fossil Plants, sponsored by EPRI, EEI, ASME, and ASM, Washington, DC, June 2–4, 1986.

    Google Scholar 

  6. P.K. Liaw, G.V. Rao, and M.G. Burke:J. Mater. Sci. Eng., in press.

  7. C.E. Jaske:Chem. Eng. Prog., April 1987, p. 37.

  8. P.K. Liaw, A. Saxena, and J. Schaefer:Eng. Fract. Mech., 1989, vol. 32, p. 675.

    Article  Google Scholar 

  9. P.K. Liaw, A. Saxena, and J. Schaefer:Eng. Fract. Mech., 1989, vol. 32, p. 709.

    Article  Google Scholar 

  10. N.S. Cheruvu:Aging of CrMoV Steel, IP 850777, Westinghouse Power Generation Division, Orlando, FL, 1987.

    Google Scholar 

  11. P.K. Liaw and J.D. Landes:Metall. Trans. A, 1986, vol. 17A, pp. 473–89.

    Google Scholar 

  12. P.K. Liaw and J.D. Landes:Effects of Monotonic and Cyclic Prestrain on Fracture Toughness: A Summary, ASTM STP 945, ASTM, Philadelphia, PA, 1988, pp. 622–46.

    Google Scholar 

  13. J. Fouldes: General Atomics, San Diego, CA, unpublished research, 1987.

  14. ASTM Book of Standards, ASTM Standard E399-83, ASTM, Philadelphia, PA, 1987, vol. 03.01.

  15. ASTM Book of Standards, ASTM Standard E813-87, ASTM, Philadelphia, PA, 1987, vol. 03.01.

  16. P. Albrecht, W.R. Andrews, J.P. Gudas, J.A. Joyce, F.J. Loss, D.E. McCabe, D.W. Schmidt, and W.A. VanDerSluys:J. Test. Eval., 1982, vol. 10, p. 245.

    Google Scholar 

  17. ASTM Book of Standards, ASTM Standard El 152-87, ASTM, Philadelphia, PA, 1987, vol. 03.01.

  18. G.A. Clarke:J. Test. Eval., 1980, vol. 8 (5), p. 213.

    Article  Google Scholar 

  19. P.M. Yuzawich and C.W. Hughes:J. Pract. Metallogr., 1978, vol. 15, p. 184.

    CAS  Google Scholar 

  20. M.G. Burke: Westinghouse Research & Development Center, Pittsburgh, PA, unpublished research, 1988.

  21. P.C. Paris and R.E. Johnson: ASTM STP 803, ASTM, Philadelphia, PA, 1983, p. II‥

  22. S. Suresh, A.K. Vasudevan, M. Tosten, and P.R. Howell:Acta Metall., 1987, vol. 35, p. 25.

    Article  CAS  Google Scholar 

  23. S. Suresh and R.O. Ritchie:Metall. Trans. A, 1982, vol. 13A, pp. 1627–31.

    Google Scholar 

  24. G.T. Gray, J.C. Williams, and A.W. Thompson:Metall. Trans. A, 1983, vol. 14A, p. 421.

    Google Scholar 

  25. D.J. Alexander and I.M. Bernstein:Proc. Strength of Metals and Alloys, Montreal, Canada, Pergamon Press, Ltd., Oxford, United Kingdom, Aug. 1985, vol. 2, p. 1163.

    Google Scholar 

  26. K.T. Faberand A.G. Evans:Acta Metall., 1983, vol. 31, p. 565.

    Article  Google Scholar 

  27. P.H. Dauskardt, R.D. Pendse, and R.O. Ritchie:Acta Metall., 1987, vol. 35, p. 2227.

    Article  CAS  Google Scholar 

  28. C.L. Briant and S.K. Banerji:Metall. Trans. A, 1979, vol. 10A, p. 123.

    CAS  Google Scholar 

  29. J.P. Materkowski and G. Krauss:Metall. Trans. A, 1979, vol. 10A, pp. 1643–51.

    CAS  Google Scholar 

  30. S.K. Banerji, C.J. McMahon, Jr., and H.C. Feng:Metall. Trans. A, 1978, vol. 9A, pp. 237–47.

    CAS  Google Scholar 

  31. T. Lichtenberg, W.M. Garrison, and J.M. Hyzak:Proc. Topical Conference on Ferritic Alloys for Use in Nuclear Energy Technologies, TMS-AIME Nuclear Metallurgy Committee, Warrendale, PA, 1983, p. 365.

    Google Scholar 

  32. C.L. Briant and N. Lewis:Mater. Sci. Technol., 1986, vol. 2, p. 34.

    CAS  Google Scholar 

  33. C.A. Hippsley, J.E. King, and J.F. Knott:Advances in the Physical Metallurgy and Applications of Steels, Liverpool, United Kingdom, Sept. 1981, The Metals Society, London, United Kingdom, p. 147.

    Google Scholar 

  34. T. Ogura and T. Masmumoto:Trans. Jpn. Inst. Met., 1986, vol. 27, p. 757.

    Google Scholar 

  35. M. Sarikaya, A.K. Jhingan, and G. Thomas:Metall. Trans. A, 1983, vol. 14A, pp. 1121–33.

    CAS  Google Scholar 

  36. B.C. Edwards:Interfacial Fracture in Alloy Steels, Martinus Nishoff Publishers, The Hague, The Netherlands, 1982.

    Google Scholar 

  37. P. Dreig,D. Lonsdale, and P.E.J. Hewitt:Met. Sci., 1982, vol. 16, p. 335.

    Article  Google Scholar 

  38. R.O. Ritchie, J.F. Knott, and J.R. Rice:J. Mech. Phys. Solids, 1973, vol. 21, p. 395.

    Article  CAS  Google Scholar 

  39. R.O. Ritchie and A.W. Thompson:Metall. Trans. A, 1985, vol. 16A, p. 233.

    CAS  Google Scholar 

  40. B. Cotterell and J.R. Rice:Int. J. Fract., 1980, vol. 16, p. 155.

    Article  Google Scholar 

  41. C.F. Shih: inFracture Analysis, ASTM STP 560, ASTM, Philadelphia, PA, 1974, p. 187.

    Google Scholar 

  42. S. Suresh and C.F. Shih:Int. J. Fract., 1986, vol. 30, p. 237.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liaw, P.K., Burke, M.G., Saxena, A. et al. Fracture toughness behavior of ex-service 2-1/4Cr-1Mo steels from a 22-year-old fossil power plant. Metall Trans A 22, 455–468 (1991). https://doi.org/10.1007/BF02656813

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656813

Keywords

Navigation