Skip to main content
Log in

ArF excimer laser induced CVD of aluminum oxide films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The authors have demonstrated photochemical deposition of aluminum oxides from Trimethylaluminum (TMA) and N2O by using a pulsed ArF excimer laser (193 nm). Both TMA and N2O are efficiently photodissociated by the 193 nm light. The films are grown on Si and InP wafers contained in a low pressure flowing cell with a heated substrate. The incident laser beam is focused and parallel to the substrate surface. Typical deposition rates are 80–150 A/min. Stripes of aluminum oxide 30 mm wide are uniformly grown on 7.5 cm Si-wafers. The film composition and purity have been investigated using Auger and Infra-red spectroscopy analysis. Surprising results are the relatively low concentration of carbon. Refractive index and thickness have been determined by an ellipsometer. Typical values for the films are 1.54–1.62. Metal-oxide-semiconductor capacitors have been fabricated and characterized. The C-V curves for n-InP/aluminum oxide have clockwise hysteresis, and minimum loop width is less than 0.5 V. The surface state densities are 1 × 1011 cm-2 eV−1 at the mid band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Lile and M. J. Taylor, J. Appl. Phys.54, 260 (1983).

    Article  CAS  Google Scholar 

  2. T. Kobayashi, M. Okamura, E. Yamaguchi, Y. Shinoda and Y. Hirota, J. Appl. Phys.52, 6434 (1981).

    Article  CAS  Google Scholar 

  3. E. Yamaguchi, M. Minakata and Y. Furukawa, Jpn. J. Appl. Phys.23, L49 (1984).

    Article  Google Scholar 

  4. L. Messick, J. Appl. Phys.47, 4949 (1979).

    Article  Google Scholar 

  5. Y. Hirota and T. Kobayashi, J. Appl. Phys.53, 5037 (1982).

    Article  CAS  Google Scholar 

  6. E. Yamaguchi, Y. Hirota and M. Minakata, Thin Solid Film,103, 201 (1983).

    Article  CAS  Google Scholar 

  7. J. E. Wager and C. W. Wilmsen, J. Appl. Phys.53, 5789 (1982).

    Article  CAS  Google Scholar 

  8. R. P. H. Chang and S. Darak, Appl. Phys. Lett.42, 272 (1983).

    Article  CAS  Google Scholar 

  9. L. G. Meiners, J. Vac. Sci. Tech.21, 655 (1982).

    Article  CAS  Google Scholar 

  10. C. P. Christensen and K. M. Lakin, Appl. Phys. Lett.32, 254 (1978).

    Article  CAS  Google Scholar 

  11. D. J. Ehrlich, R. M. Osgood Jr, and T. F. Deutsch, IEEE J.Q.E.,QE-16, 1233 (1983).

    Google Scholar 

  12. J. W. Peter, F. L. Gebhart and T. C. Holl, Solid State Tech.23, 121 (1980).

    Article  Google Scholar 

  13. R. W. Andretta, C. C. Abele, J. F. Osmundsen, J. E. Eden, D. Lubben and J. E. Greene, Appl. Phys. Lett.40, 183 (1982).

    Article  Google Scholar 

  14. R. Solanki, P. K. Boyer and G. J. Collins, Appl. Phys. Lett.41, 1048 (1982).

    Article  CAS  Google Scholar 

  15. L. M. Terman, Solid State Electron.5, 285 (1962).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minakata, M., Furukawa, Y. ArF excimer laser induced CVD of aluminum oxide films. J. Electron. Mater. 15, 159–164 (1986). https://doi.org/10.1007/BF02655330

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655330

Key words

Navigation