Skip to main content
Log in

Analysis of crystallographic high temperature fatigue crack growth in a nickel base alloy

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Crack growth behavior of a nickel-base alloy, Udimet 700, was studied at room temperature and 850 °C in air and vacuum. Crack growth rates were higher in air than in vacuum but this increase in growth rates was nearly the same at both temperatures. In contrast to the effect of environment, an increase of temperature from 25 to 850 °C has a much larger effect on growth rates although the mode of crack growth did not change with temperature or with environment. A detailed analysis of the fracture surfaces indicated that the growth rates under all of the above experimental conditions occurs by a crystallographic faceted mode with the plane of the facet identified to be the {100} cleavage plane rather than a slip plane. Also the increase in growth rates with temperature appears not to be directly related to an environmental effect, creep effect or variation of elastic modulus with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. E. Forsyth:Proceedings of the Symposium on Crack Propagation, Cranfield, The College of Aeronautics, 1962, vol. 1, pp. 76–94.

    Google Scholar 

  2. R. P. Wei:Trans. ASM, 1967, vol. 60, p. 279.

    Google Scholar 

  3. K. R. L. Thompson and J. V. Craig:Met. Trans., 1970, vol. 1, pp. 1047–49.

    CAS  Google Scholar 

  4. C. E. Richards:Acta Metall., 1971, vol. 19, p. 583.

    Article  CAS  Google Scholar 

  5. G. C. Garrett and J. F. Knott:Acta Metall., 1975, vol. 23, pp. 841–48.

    Article  CAS  Google Scholar 

  6. R. N. Wright and A. S. Argon:Met. Trans., 1970, vol. 1, p. 3065.

    CAS  Google Scholar 

  7. J. C. Chesnutt, CG. Rhodes and J. C. Williams: ASTM STP 600, C. D. Beachem and W. R. Warke, eds., American Society for Testing and Materials, pp. 99 138, Philadelphia, 1976.

  8. M. Gell and G. R. Leverant:Acta Metall., 1968, vol. 16, pp. 533–61.

    Google Scholar 

  9. D. J. Duquette, M. Gell, and J. W. Piteo:Met. Trans., 1970, vol. 1, pp. 3107–15.

    CAS  Google Scholar 

  10. D. A. Meyn:Trans. ASM, 1968, vol. 61, pp. 52–61.

    Google Scholar 

  11. D. A. Meyn:Met. Trans., 1971, vol. 2, pp.853–65.

    CAS  Google Scholar 

  12. G. R. Yoder, L. A. Cooley, and T. W. Crooker:Met. Trans. A, 1977, vol. 8A, pp. 1737–43.

    Article  CAS  Google Scholar 

  13. D. Eylon:Met. Trans. A, 1979, vol. 10A, pp. 311–17.

    CAS  Google Scholar 

  14. R. W. Hertzberg and W. J. Mills: ASTM-STP 600, C. D. Beachem and W. R. Warke, eds., American Society for Testing and Materials, pp. 220–34, 1976.

  15. A. Yuen, A. W. Hopkins, G. R. Leverant, and C. A. Rau:Met. Trans., 1974, vol. 5, pp.1833–42.

    Article  CAS  Google Scholar 

  16. H. D. Williams and G. C. Smith:Philos. Mag., 1965, vol. 13, p. 835.

    Article  Google Scholar 

  17. J. L. Robinson and C. J. Beevers:Met. Sci. J., 1973, vol. 7, p. 135.

    Google Scholar 

  18. C. H. Wells and C. P. Sullivan:Trans. ASM, 1964, vol. 57, pp. 841–55.

    CAS  Google Scholar 

  19. C. H. Wells and C. P. Sullivan:Trans. ASM, 1965, vol. 58, pp. 391–402.

    CAS  Google Scholar 

  20. C. H. Wells and C. P. Sullivan:Trans. ASM, 1967, vol. 60, pp. 217–22.

    CAS  Google Scholar 

  21. C. H. Wells and C. P. Sullivan:Trans. ASM, 1968, vol. 61, pp. 149–55.

    Google Scholar 

  22. F. E. Organ and M. Gell:Met. Trans., 1971, vol. 2, pp. 943–51.

    CAS  Google Scholar 

  23. K. Sadananda and P. Shahinian:Eng. Frad. Mech., 1979, vol. 11, pp. 73–86.

    Article  CAS  Google Scholar 

  24. C. A. Rau, Jr. and L. H. Burke:Eng. Fract. Mech., 1971, vol. 12, pp. 211–22.

    Article  Google Scholar 

  25. Plane-Strain Fracture Toughness of Metallic Materials: E399-74, Annual Book of ASTM Standards, Partll, pp. 432–51, 1974.

  26. W. K. Wilson:Eng. Fract. Mech., 1976, vol.2, p. 169.

    Google Scholar 

  27. P. Shahinian and K. Sadananda:Engineering Aspects of Creep, Inst. Mech. Engrs., London, vol. 2, pp. 1–7, 1980.

    Google Scholar 

  28. K. Sadananda and P. Shahinian:Met. Trans., 1980 vol. 11 A, pp. 267–76.

    Google Scholar 

  29. L. A. James:J. Eng. Mater. Technol., 1976, vol. 98, pp. 235–38.

    CAS  Google Scholar 

  30. K. Sadananda and P. Shahinian:Mater. Sci. Eng., 1980, vol. 43, pp. 159–68.

    Article  CAS  Google Scholar 

  31. K. Sadananda and P. Shahinian:Met. Trans. A, 1978, vol. 9A, pp. 79–84.

    Article  CAS  Google Scholar 

  32. K. Sadananda and P. Shahinian:J. Mater. Sci., 1978, vol. 13, pp. 2347–57.

    Article  CAS  Google Scholar 

  33. P. Shahinian and K. Sadananda:J. Eng. Mater. Technol., Trans. ASME, 1979, vol. 101, pp. 224–30.

    Article  CAS  Google Scholar 

  34. P. Shahinian and K. Sadananda:Symposium on Creep-Fatigue Interaction, AS ME M PCS, pp. 365–90, American Society of Mechanical Engineers, New York, 1976.

    Google Scholar 

  35. J. R. Haigh:Eng. Fract. Mech., 1975, vol. 7, pp. 271–84.

    Article  CAS  Google Scholar 

  36. R. B. Scarlin:Met. Tram. A, 1977, vol. 8A, pp. 1941^8.

    Google Scholar 

  37. S. Pearson:Nature, 1966, vol. 211, pp. 1077–78.

    Article  CAS  Google Scholar 

  38. R. C. Bates and W. G. Clark, Jr.: Sci. Paper 68-1-D7-RDAFC-P1, Westinghouse Research Laboratories, September 1968.

  39. M. O. Speidel:High Temperature Materials in Gas Turbines, P. R. Sahm and M. O. Speidel, eds., pp. 207–51, Elsevier, Amsterdam, 1974.

    Google Scholar 

  40. K. Sadananda and P. Shahinian:Int.J. Fract., 1977, vol. 13, pp. 585–94.

    Article  CAS  Google Scholar 

  41. P. Shahinian, H. H. Smith, and H. E. Watson:J. Eng. Ind., (Trans. ASME, B), 1971, vol. 93, pp. 976–80.

    CAS  Google Scholar 

  42. P. Shahinian:Met. TechnoL, 1978, vol. 5, no. 11, pp. 372–80.

    CAS  Google Scholar 

  43. “High Temperature High Strength Nickel Base Alloys,” International Nickel Company, Inc., Huntington, WV, 1964.

  44. F. S. Pettit and J. K. Tien:Corrosion Fatigue: Chemistry, Mechanics and Microstructure, O. F. Devereux, A. J. McEvily, and R. W. Staehle, eds., pp. 576–89, National Association of Corrosion Engineers, Houston, TX, 1972.

    Google Scholar 

  45. Y. A. Bagaryatski and Y. D. Tiapkin:Sov. Phys. Cryst., 1957, vol. 2, p. 414, also 1961, vol. 5 p. 842.

    Google Scholar 

  46. C. Buckle, B. Genty, and J. Manene:Rev. Met., 1959, vol. 56, p. 247.

    CAS  Google Scholar 

  47. A. J. Ardel and R. B. Nicholson:Acta Metall., 1966, vol. 14, pp. 1295–1309.

    Article  Google Scholar 

  48. R. J. De Angelis and J. B. Cohen:Deformation Twinning, R. E. Red-Hill, J. P. Hirth, and H. C. Rogers, eds., pp. 430–64, Gordon and Breach Science Publishers, NY, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadananda, K., Shahinian, P. Analysis of crystallographic high temperature fatigue crack growth in a nickel base alloy. Metall Trans A 12, 343–351 (1981). https://doi.org/10.1007/BF02655208

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655208

Keywords

Navigation