Skip to main content
Log in

Direct simulation of initial filtration phenomena within highly porous media

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Initial filtration phenomena within highly porous filter media—ceramic foam filters (CFF) —were simulated by numerically solving the Navier-Stokes equations and the general transport equation for suspended particles. In this approach, a “piece” of the highly porous filter was modeled directly by constructing a calculation domain such that the main average geometrical properties of the real filters were embodied therein. The governing equations were then solved by imposing appropriate boundary conditions on the solid surfaces of the filter webs. The influences of Reynolds, Peclet, and Gravitational numbers, as well as filter porosity, on initial filtration efficiencies were investigated in this simulation. Predicted results were spotchecked against data from industrial filtration trials conducted by the authors for aluminum melts and found to be in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chi Tien:Granular Filtration of Aerosols and Hydrosols, Butterworth and Co., Boston, MA, 1989.

    Google Scholar 

  2. J. Szekely and J.J. Poveromo:AIChE J., 1975, vol. 21 4, pp. 769–75.

    Article  CAS  Google Scholar 

  3. A.C. Payatakes, C. Tien, and R.M. Turian:AIChE J., 1973, vol. 19 (1), pp. 67–76.

    Article  CAS  Google Scholar 

  4. B. Fardi and B.Y.H. Liu:Aerosol Sci. Technol., 1992, pp. 36–44.

  5. T. Iwasaki:J. Am. Water Works Assoc., 1937, vol. 29, pp. 1591–602.

    CAS  Google Scholar 

  6. Chi Tien:Granular Filtration of Aerosols and Hydrosols, Butterworth and Co., Boston, MA, 1989, p. 34.

    Google Scholar 

  7. D. Apelian and R. Mutharasan:J. Met., 1980, No. 9, pp. 14–18.

    Google Scholar 

  8. T.A. Engh, B. Rasch, and E. Bathen:Light Met., 1986, pp. 829–36.

  9. F. Frisvold, T.A. Engh, S.T. Johansen, and T. Pedersen:Light Met., 1992, pp. 112–31.

  10. I.S. Goldberg, K.Y. Lam, B. Bernstein, and J.O. Hutchens:J. Aerosol Sci., 1978, vol. 9, pp. 209–18.

    Article  Google Scholar 

  11. H.C. Yen and B.Y.H. Liu:J. Aerosol Sci., 1974, vol. 5, pp. 191–204.

    Article  Google Scholar 

  12. D.B. Ingham:J. Aerosol Sci., 1981, vol. 12 (4), pp. 357–65.

    Article  Google Scholar 

  13. I.S. Goldberg:J. Aerosol Sci., 1981, vol. 12, pp. 11–14.

    Article  Google Scholar 

  14. S. Joo and R.I.L. Guthrie:Metall. Trans. B, 1993, vol. 24B, pp. 755–65.

    CAS  Google Scholar 

  15. S.V. Patankar:Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York, NY, 1980, p. 133.

    Google Scholar 

  16. R. Rajagopalan and Chi Tien:AIChE. J., 1976, vol. 22 (3), pp. 523–33.

    Article  CAS  Google Scholar 

  17. Chi Tien:Granular Filtration of Aerosols and Hydrosols, Butterworth and Co., Boston, MA, 1989, p. 234.

    Google Scholar 

  18. J. Happel:AIChE. J., 1958, vol. 4 (2), pp. 197–201.

    Article  CAS  Google Scholar 

  19. J.P. Herzig, D.M. Leclerc, and P. Le Goff:Ind. Eng. Chem., 1970, vol. 62 (5), pp. 8–35.

    Article  CAS  Google Scholar 

  20. W.A. Hall:J. Sanit. Eng. Div. Proc. Am. Soc. Civil Eng., SA3, 1957, pp. 1–9.

    Google Scholar 

  21. I.B. Stechkina and N.A. Fuchs:Ann. Occup. Hyg., 1966, vol. 9, pp. 59–64.

    Google Scholar 

  22. D.B. Ingham:Aerosol Sci., 1981, vol. 12 (4), pp. 357–65.

    Article  Google Scholar 

  23. R. Rajagopalan:Can. J. Chem. Eng., 1977, vol. 55, pp. 246–51.

    Article  CAS  Google Scholar 

  24. K.M. Yao, M.T. Habibian, and C.R. O’Melia:Environ. Sci. Technol., 1971, vol. 5 (11), pp. 1105–12.

    Article  CAS  Google Scholar 

  25. C.R. O’Melia and W. Stumm:J. Am. Water Works Assoc, 1967, vol. 59, pp. 1393–1413.

    CAS  Google Scholar 

  26. C. Tian and R.I.L. Guthrie:Light Met., TMS, Warrendale, PA, 1993, pp. 1003–07.

    Google Scholar 

  27. A.C. Payatakes: Ph.D. Dissertation, Syracuse University, Syracuse, NY, 1973.

    Google Scholar 

  28. C. Tien:Granular Filtration of Aerosols and Hydrosols, Butterworth and Co., Boston, MA, 1989, p. 33.

    Google Scholar 

  29. K.J. Ives:Proc. Inst. Civil Eng., 1960, vol. 16, p. 189.

    Google Scholar 

  30. D. Doutre and R.I.L. Guthrie:Int. Symp. on Refining and Alloying of Liquid Aluminum and Ferroalloys, Trondheim, Norway, 1985, pp. 147–63.

  31. F.A.L. Dullien:Porous Media: Fluid Transport and Pore Structure, Academic Press, New York, NY, 1979, p. 77.

    Google Scholar 

  32. F. Frisvold and T.A. Engh:2nd Australian Asian Pacific Course and Conference on Aluminum Melt Treatment and Casting, July 1–4, 1991, Melbourne, Australia, 1991, pp. 23:1–17.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, C., Guthrie, R.I.L. Direct simulation of initial filtration phenomena within highly porous media. Metall Mater Trans B 26, 537–546 (1995). https://doi.org/10.1007/BF02653871

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02653871

Keywords

Navigation