Skip to main content
Log in

A composition-dependent model for the complex dielectric function of In1 xGaxAsyP1− y lattice-matched to InP

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Accurate and numerically efficient models for the complex dielectric function vs wavelength and material characteristics are essential for the use of nondestructive optical techniques such as spectroscopic ellipsometry or reflectometry. These optical techniques are commonly used for real-time and run-to-run monitoring and control of growth and etch processes to determine a material's composition and thickness. In this work, we discuss an improved composition-dependent model for the complex dielectric function for lattice-matched In1-xGaxAsyP1-y/InP systems valid over the entire composition range 0 ≤ y ≤ 1. We describe our model, which is an extension of the critical point parabolic band method and is based on the model proposed by Charles Kim et al. for the AxGa1-x/GaAs system. We demonstrate the quality of the model in fitting optical data for individual compositions and compare our results to other established models including the harmonic oscillator approximation and the model of Adachi. Using results obtained from the individual fits, we generate a composition-dependent model that is valid for the entire range of lattice-matched compositions. Also, we show how this model can be used to accurately determine the composition (±0.01) of an unknown material whose dielectric response has been obtained using spectroscopic ellipsometry or a similar technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M.A. Azzam and N. M. Bashara,Ellipsometry and Polarized Light (Elsevier Publications, 1977).

  2. David E. Aspnes,Handbook of Optical Solids, ed. E. Palik, (Academic Press, 1985), p. 89.

  3. David E. Aspnes,Characterization of Semiconductors and Semiconductor Structures by Photometric and Ellipsometric Techniques (SPIE, 1987).

  4. O.S. Heavens,Optical Properties of Thin Solid Films (Dover, 1955).

  5. F. Bassani and G. Pastori Parravicini,Electronic States and Optical Transitions in Solids (Pergamon Press, 1975).

  6. J.A. van Vechten,Phys. Rev. 182 (3), 891 (1969).

    Article  Google Scholar 

  7. Jasprit Singh,Physics of Semiconductors and Their Heterostructures (McGraw-Hill, 1993).

  8. Sadao Adachi,Physical Properties of III-V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP (John Wiley and Sons, 1992).

  9. S.M. Kelso, D.E. Aspnes, M.A. Pollack and R.E. Nahory,Phys. Rev. B 26 (12), 6669 (1982).

    Google Scholar 

  10. Charles C. Kim, Ph.D. thesis, University of Illinois at Chicago, 1991.

  11. Charles C. Kim, James W. Garland, H. Abad and Paul M. Raccah,Phys. Rev. B 45 (20), 11749 (1992).

    Google Scholar 

  12. C.C. Kim, J.W. Garland and P.M. Raccah,Phys. Rev. B 47 (14), 1876(1993).

    Article  CAS  Google Scholar 

  13. D.E. Aspnes and H.J. Stocker,J. Vac. Sci. Technol. 21 (2), 413 (1982).

    Article  CAS  Google Scholar 

  14. H. Ehrenreich and M.L. Cohen,Phys. Rev. 115 (4), 786 (1959).

    Article  Google Scholar 

  15. M. Erman, J.B. Theeten, N. Vodjdani and Y. Demay,J. Vac. Sci. Technol. B 1 (2), 328 (1983).

    Article  CAS  Google Scholar 

  16. Donald W. Marquardt,J. Soc. Indust. Appl. Math. 11 (2), 431 (1963).

    Article  Google Scholar 

  17. W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling,Numerical Recipes in C (Cambridge University Press, 1988).

  18. Ernesto H. Perea, Emilio E. Mendez and Clifton G. Fonstad,Appl. Phys. Lett. 36 (12), 978 (1980).

    Article  CAS  Google Scholar 

  19. Sadao Adachi,Phys. Rev. B 39 (17), 12612 (1989).

    Article  CAS  Google Scholar 

  20. David E. Aspnes, private communication.

  21. Sadao Adachi,Phys. Rev. B 35 (14), 7454 (1987).

    Article  CAS  Google Scholar 

  22. Fred L. Terry, Jr,J. Appl. Phys. 70 (1), 409 (1991).

    Article  CAS  Google Scholar 

  23. Sadao Adachi, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamlet, L.I., Terry, F.L. A composition-dependent model for the complex dielectric function of In1 xGaxAsyP1− y lattice-matched to InP. J. Electron. Mater. 24, 2005–2013 (1995). https://doi.org/10.1007/BF02653024

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02653024

Key words

Navigation