Skip to main content
Log in

Critical thickness of GaAs/InGaAs and AlGaAs/GaAsP strained quantum wells grown by organometallic chemical vapor deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper we describe a study of strained quantum wells (QWs) as a means to experimentally observe the critical thickness (h c) for the formation of interfacial misfit dislocations. Two material systems were investigated: GaAs/In0.11Ga0.89As, in which the QW layers are under biaxialcompression, and Al0.35Ga0.65As/GaAs0.82P0.18, in which the QW layers are under biaxialtension. Samples were grown by atmospheric pressure organometallic chemical vapor deposition, and characterized by low-temperature photoluminescence (PL), x-ray diffraction, optical microscopy, and Hall measurements. For both material systems, the observed onset of dislocation formation agrees well with the force-balance model assuming a double-kink mechanism. However, overall results indicate that the relaxation is inhomogeneous. Annealing at 800–850° C had no significant effect on the PL spectra, signifying that even layers that have exceededh c and have undergone partial relaxation are thermodynamically stable against further dislocation propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. van der Merwe, J. Appl. Phys.34, 123 (1963).

    Article  Google Scholar 

  2. J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth27, 118 (1974).

    CAS  Google Scholar 

  3. J. Y. Tsao and B. W. Dodson, Appl. Phys. Lett.53, 848 (1988).

    Article  CAS  Google Scholar 

  4. R. People and J. C. Bean, Appl. Phys. Lett.47, 32 (1985).

    Article  Google Scholar 

  5. I. J. Fritz, S. T. Picraux, L. R. Dawson, T. J. Drummond, W. D. Laidig and N. G. Anderson, Appl. Phys. Lett.46, 967 (1985).

    Article  CAS  Google Scholar 

  6. T. G. Andersson, Z. G. Chen, V. D. Kulakovskii, A. Uddin and J. T. Vallin, Appl. Phys. Lett.51, 752 (1987).

    Article  CAS  Google Scholar 

  7. N. G. Anderson, W. D. Laidig, R. M. Kolbas and Y. C. Lo, J. Appl. Phys.60, 2361 (1986).

    Article  CAS  Google Scholar 

  8. C. R. Wie, J. Appl. Phys.65, 2267 (1989).

    Article  CAS  Google Scholar 

  9. P. J. Orders and B. F. Usher, Appl. Phys. Lett.50, 980 (1987).

    Article  CAS  Google Scholar 

  10. J. Reithmaier, H. Cerva and R. Losch, Appl. Phys. Lett.54, 48 (1989).

    Article  CAS  Google Scholar 

  11. P. S. Peercy, B. W. Dodson, J. Y. Tsao, E. D. Jones, D. R. Myers, T. E. Zipperian, L. R. Dawson, R. M. Biefeld, J. F. Klem and C. R. Hills, IEEE Electron Dev. Lett.9, 621 (1988).

    Article  Google Scholar 

  12. I. J. Fritz, Appl. Phys. Lett.51, 1080 (1987).

    Article  CAS  Google Scholar 

  13. B. W. Dodson and J. Y. Tsao, Appl. Phys. Lett.51, 1325 (1987).

    Article  CAS  Google Scholar 

  14. D. Bimberg, D. Mars, J. N. Miller, R. Bauer and D. Oertel, J. Vac. Sci. Technol.B4, 1014 (1986).

    Google Scholar 

  15. P. L. Gourley, I. J. Fritz and L. R. Dawson, Appl. Phys. Lett.52, 377 (1988).

    Article  CAS  Google Scholar 

  16. I. J. Fritz, P. L. Gourley and L. R. Dawson, Appl. Phys. Lett.51, 1004 (1987).

    Article  CAS  Google Scholar 

  17. J. Y. Yao, T. G. Andersson and G. L. Dunlop, Appl. Phys. Lett.53, 1420 (1988).

    Article  CAS  Google Scholar 

  18. D. C. Bertolet, J. K. Hsu, S. H. Jones and K. M. Lau, Appl. Phys. Lett.52, 293 (1988).

    Article  CAS  Google Scholar 

  19. D. C. Bertolet, J. K. Hsu, K. M. Lau, E. S. Koteles and D. Owens, J. Appl. Phys.64, 6562 (1988).

    Article  CAS  Google Scholar 

  20. D. C. Bertolet, J. K. Hsu and K. M. Lau, Appl. Phys. Lett.53, 2501 (1988).

    Article  CAS  Google Scholar 

  21. E. S. Koteles, D. Owens, D. C. Bertolet, J. Hsu and K. M. Lau, Surf. Sci.228, 314 (1990).

    Article  CAS  Google Scholar 

  22. J. K. Hsu, S. H. Jones and K. M. Lau, J. Appl. Phys.60, 3781 (1986).

    Article  CAS  Google Scholar 

  23. K. L. Kavanagh, M. A. Capano, L. W. Hobbs, J. C. Barbour, P. M. J. Maree, W. Schaff, J. W. Mayer, D. Pettit, J. M. Woodall, J. A. Stroscio and R. M. Feenstra, J. Appl. Phys.64, 4843 (1988).

    Article  CAS  Google Scholar 

  24. J. Y. Marzin, M. N. Charasse and B. Sermage, Phys. Rev.B31, 8298 (1985).

    Google Scholar 

  25. H. Asai and K. Oe, J. Appl. Phys.54, 2052 (1983).

    Article  CAS  Google Scholar 

  26. M. Grundmann, U. Lienert, D. Bimberg, A. Fischer-Colbrie and J. N. Miller, Appl. Phys. Lett.55, 1765 (1989).

    Article  CAS  Google Scholar 

  27. R. Hull and J. C. Bean, Appl. Phys. Lett.54, 925 (1989).

    Article  CAS  Google Scholar 

  28. M. V. Lupal and A. N. Pikhtin, Sov. Phys. Semicond.14, 1291 (1980).

    Google Scholar 

  29. D. C. Bertolet, Growth of III–V semiconductor quantum wells by OMCVD, Ph.D. thesis, Univ. Mass., Amherst, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertolet, D.C., Hsu, JK., Agahi, F. et al. Critical thickness of GaAs/InGaAs and AlGaAs/GaAsP strained quantum wells grown by organometallic chemical vapor deposition. J. Electron. Mater. 19, 967–974 (1990). https://doi.org/10.1007/BF02652923

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652923

Key words

Navigation