Skip to main content
Log in

Capillarity in isothermal infiltration of alumina fiber preforms with aluminum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Models derived in petroleum engineering and soil science for flow of two immiscible fluids in a porous medium are extended to the infiltration of ceramic preforms by a liquid metal. SAFFIL alumina fiber preforms are infiltrated with an aluminum matrix in a series of interrupted unidirectional and isothermal experiments at various low applied pressures, to measure profiles of the volume fraction of metal along the length of the preforms. Comparison of experimental data with theory reveals the existence of a pressure-dependent incubation time for wetting of the alumina preforms by molten aluminum at 973 K. If this incubation time is taken into account, experimental curves of metal distribution are well predicted by theory, confirming the validity of the models after initiation of flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

g:

gravitational acceleration (ms-2)

k :

permeability of the saturated medium (m2)

k c :

effective permeability (m2)

k r :

relative permeability of the metal phase (no unit, 0 <k r < 1)

P :

local pressure difference between nonwetting and wetting fluids (Pa)

P b :

bubbling pressure (Pa)

r f :

fiber radius (m)

S eff :

effective saturation in wetting phase

t :

time (s)

T :

temperature (K)

V f :

local fiber volume fraction

V m o :

local metal volume fraction

m :

metal volume fraction at ψ = 0

V oexp m :

metal volume fraction at ψ= 0,i.e., x = 0, measured on experimental samples

V oth m :

metal volume fraction at ψ= 0, calculated using Eq. [3] and the value of the applied pressure

vo :

superficial velocity of the infiltrating metal (ms-1)

V p :

local pore volume fraction

x :

position along the preform axis (m)

ΔV :

volume element

λ:

pore size distribution index

μ:

metal viscosity (Pa ⋅ s)

ψ:

x/√t, Boltzman transformation parameter (ms-1/2)

π:

metal density (kg/m3)

References

  1. A. Mortensen and I. Jin:Intern. Mater. Rev., 1992, vol. 37, pp. 101–28.

    CAS  Google Scholar 

  2. A. Mortensen and J.A. Cornie:Metall. Trans. A, 1987, vol. 18A, pp. 1160–63.

    CAS  Google Scholar 

  3. J. Bear and Y. Bachmat:Introduction to Modeling of Transport Phenomena in Porous Media, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990.

    Google Scholar 

  4. A. Mortensen, L.J. Masur, J.A. Cornie, and M.C. Flemings:Metall. Trans. A, 1989, vol. 20A, pp. 2535–47.

    CAS  Google Scholar 

  5. L.J. Masur, A. Mortensen, J.A. Cornie, and M.C. Flemings:Metall. Trans. A, 1989, vol. 20A, pp. 2549–57.

    CAS  Google Scholar 

  6. A. Mortensen and T. Wong:Metall. Trans. A, 1990, vol. 21A, pp. 2257–63.

    CAS  Google Scholar 

  7. A. Mortensen:Metall. Trans. A, 1990, vol. 21A, p. 2287.

    CAS  Google Scholar 

  8. A. Mortensen and V. Michaud:Metall. Trans. A, 1990, vol. 21A, pp. 2059–72.

    CAS  Google Scholar 

  9. V.J. Michaud and A. Mortensen:Metall. Trans. A, 1992, vol. 23A, pp. 2263–80.

    CAS  Google Scholar 

  10. P. Jarry, V.J. Michaud, A. Mortensen, A. Dubus, and R. Tirard- Collet:Metall. Trans. A, 1992, vol. 23A, pp. 2281–89.

    CAS  Google Scholar 

  11. J. Bear:Dynamics of Fluids in Porous Media, American Elsevier, New York, NY, 1972.

    Google Scholar 

  12. F.A.L. Dullien:Porous Media, Fluid Transport and Pore Structure, Academic Press, New York, NY, 1979.

    Google Scholar 

  13. A.E. Scheidegger:The Physics of Flow through Porous Media, 3rd ed., University of Toronto Press, Toronto, 1974.

    Google Scholar 

  14. H. Kaufmann and A. Mortensen:Metall. Trans. A, 1992, vol. 23A, pp. 2071–73.

    CAS  Google Scholar 

  15. R.H. Brooks and A.T. Corey:Hydraulic Properties of Porous Media, Colorado State University Hydrology Papers, Paper No. 3, Mar. 1964.

  16. J.R. Philip:Soil Sci., 1956, vol. 83, pp. 345–57.

    Article  Google Scholar 

  17. T. Fitzgerald: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1993.

    Google Scholar 

  18. L.J. Masur: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1988.

    Google Scholar 

  19. J.D. Seitz, G.R. Edwards, G.P. Martins, and P.Q. Campbell: inProc. Conf. on Interfaces in Metal-Ceramic Composites, R.Y. Lin, R.J. Arsenault, G.P. Martins, and S.G. Fishman, eds., TMS-AIME, Warrendale, PA, 1989, pp. 197–212.

    Google Scholar 

  20. P.B. Maxwell, G.P. Martins, D.L. Olson, and G.R. Edwards:Metall. Trans. B, 1990, vol. 21B, pp. 475–85.

    CAS  Google Scholar 

  21. S.-Y. Oh, J.A. Cornie, and K.C. Russell:Metall. Trans. A, 1989, vol. 20A, pp. 533–41.

    CAS  Google Scholar 

  22. V. Laurent, D. Chatain, C. Chatillon, and N. Eustathopoulos:Acta Metall., 1988, vol. 36, pp. 1797–1803.

    Article  CAS  Google Scholar 

  23. T. Jonas: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Undergraduate Student, Department of Materials Science, Massachusetts Institute of Technology, Cambridge, MA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michaud, V.J., Compton, L.M. & Mortensen, A. Capillarity in isothermal infiltration of alumina fiber preforms with aluminum. Metall Mater Trans A 25, 2145–2152 (1994). https://doi.org/10.1007/BF02652315

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652315

Keywords

Navigation