Skip to main content
Log in

Rapid thermal chemical vapor deposition of germanium on silicon and silicon dioxide and new applications of ge in ULSI technologies

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, low pressure chemical vapor deposition of pure germanium on silicon and silicon dioxide has been considered for new applications in future ultra large scale integration (ULSI) technologies. Germanium depositions were performed in a lamp heated cold-wall rapid thermal processor using thermal decomposition of GeH4. It is shown that Ge deposition on Si can be characterized by two different regions: a) at temperatures below approximately 450° C, the deposition is controlled by the rate of surface reactions resulting in an activation energy of 41.7 kcal/mole. b) Above this temperature, mass transport effects become dominant. The deposition rate at the transition temperature is approximately 800 Å/min. It is shown that Ge deposition on SiO2 does not occur, even at temperatures as high as 600° C, resulting in a highly selective deposition process. Selectivity, combined with low deposition temperature makes the process very attractive for a number of applications. In this work, it is shown for the first time that selective Ge deposition can be used to eliminate silicon consumption below the gate level during the silicidation of the shallow source and drain junctions of deep submicron MOSFETs. In addition, a new in situ technique has been developed which allows polycrystalline germanium (poly-Ge) deposition on SiO2. In this work poly-Ge has been considered as a low temperature alternative to polycrystalline silicon (poly-Si) in the formation of gate electrodes in single-wafer manufacturing where low-thermal budget processes are most desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Singh, J. Appl. Phys.63, R59 (1988).

    Article  CAS  Google Scholar 

  2. C. M. Gronet, J. C. Sturm, K. E. Williams, J. F. Gibbons and S. D. Wilson, Appl. Phys. Lett.48, 1012 (1986).

    Article  CAS  Google Scholar 

  3. G. P. Burns and J. G. Wilkes, Semicond. Sci. Tech.3, 442 (1988).

    Article  CAS  Google Scholar 

  4. J. C. Sturm, C. M. Gronet, C. A. King, S. D. Wilson and J. F. Gibbons, IEEE Electron Device Lett.EDL-7, 577 (1986).

    CAS  Google Scholar 

  5. K. H. Jung, G. H. Chun and D. L. Kwong, Mater. Res. Soc. Symp. Proc.146, 1115 (1989).

    Google Scholar 

  6. M. C. Öztürk, J. J. Wortman, Y. Zhong, X. Ren, R. Miller, F. S. Johnson, D. T. Grider and D. A. Abercrombie, Mater. Res. Soc. Symp. Proc.146, 109 (1989).

    Google Scholar 

  7. F. S. Johnson, R. M. Miller, M. C. Öztürk and J. J. Wortman, Mater. Res. Soc. Symp. Proc.146, 345 (1989).

    CAS  Google Scholar 

  8. J. F. Gibbons, C. A. King, J. L. Hoyt, D. B. Noble, C. M. Gronet, M. P. Scott, S. J. Rosner, G. Reid, S. Laderman, K. Nauka, J. Turner and T. I. Kamins, IEDM Tech. Digest, 566 (1988).

  9. G. L. Patton, S. S. Iyer, S. L. Delage, S. Tiwari and J. M. C. Stork, IEEE Electron Device Lett.9, 165 (1988).

    Article  CAS  Google Scholar 

  10. H. Ishii, Y. Takahashi and J. Murota, Appl. Phys. Lett.47, 863 (1985).

    Article  CAS  Google Scholar 

  11. D. J. Dumin, J. Cryst. Growth8, 33 (1971).

    Article  CAS  Google Scholar 

  12. L. van den Hove, “Advanced interconnection and contact schemes based on TiSi2 and CoSi2: relevant materials issues and technological implementation,” Ph.D. thesis, Katholieke Universteit Leuven, Belgium, (June 1988).

    Google Scholar 

  13. G. Baccarani, M. R. Wordeman and R. H. Dennard, IEEE Trans. Electron Devices,ED-31, 452 (1984).

    Google Scholar 

  14. J. Nulman, B. Cohen, W. Blonigan, S. Antonio, R. Meinecke and A. Gat, Mater. Res. Soc. Symp. Proc.146, 461 (1989).

    Google Scholar 

  15. C. Hill and S. Jones in “Reduced Thermal Processing for ULSI,” ed. R. A. Levy, Plenum Publishing Co., New York, (1989).

    Google Scholar 

  16. G. R. Srinivasan, J. Cryst. Growth70, 201 (1984).

    Article  CAS  Google Scholar 

  17. T. F. Kuech, M. Maenpaa and S. S. Lau, Appl. Phys. Lett.39, 245 (1981).

    Article  CAS  Google Scholar 

  18. O. Thomas, S. Delage, F. M. d’Heurle and G. Scilla, Appl. Phys. Lett.54, 228 (1989).

    Article  CAS  Google Scholar 

  19. N. Kasai, N. Endo and A. Ishitani, IEDM Tech. Digest, 242 (1988).

  20. H. Kotani, T. Tsutsumi, J. Komori and S. Nagao, IEDM Tech. Digest, 217 (1987).

  21. E. K. Broadbent and C. M. Ramiller, J. Electrochem. Soc.131, 1427 (1984).

    Article  CAS  Google Scholar 

  22. M. Moslehi, M. Wong and K. Saraswat, “In-situ MOS engineering in a novel rapid thermal/plasma processing multi chamber” presented at 1987 Symp. VLSI Tech. and Applications, Taiwan (1987).

  23. D. J. Dumin, J. Electrochem. Soc.117, 95 (1970).

    Article  CAS  Google Scholar 

  24. H. Herzer, S. Kalbitzer, I. Ruge and J. Graul, “Electrical properties of ion-implanted germanium,” Proc. 2nd Int. Conf. on Ion Implantation in Semicond. Phys. and Tech., 307 (1971).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Öztürk, M.C., Grider, D.T., Wortman, J.J. et al. Rapid thermal chemical vapor deposition of germanium on silicon and silicon dioxide and new applications of ge in ULSI technologies. J. Electron. Mater. 19, 1129–1134 (1990). https://doi.org/10.1007/BF02651993

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651993

Key words

Navigation