Skip to main content
Log in

Dynamic strain aging and hydrogen-induced softening in alpha titanium

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Compression tests were carried out on samples of commercial-purity titanium charged with up to 4.7 at. pct hydrogen. Strain rates of 10−3 to 1 s−1 were employed and testing was limited to the α phase field at temperatures of 773 to 973 K. The dependences of the flow stress on strain, strain rate, and temperature were determined. A plateau or bulge appeared in the temperature and strain-rate dependences of the flow stress, and the work-hardening rate also showed peaks. Serrations were observed on some of the stress-strain curves. All these features indicated that dynamic strain aging (DSA) was occurring. Analysis of the results (together with data from other authors) indicates that there are three ranges of DSA behavior in this material within the experimentally investigated temperature range; these appear to be associated with the diffusion of iron, carbon, and oxygen, respectively. Alloying with hydrogen decreases the magnitude of the DSA attributable to these elements and displaces the phenomenon to higher temperatures and/or to lower strain rates. The dependence on strain rate and temperature of the relative softening attributable to hydrogen addition was determined. The results indicate that hydrogen-induced softening is related to the occurrence of DSA in this temperature range. Possible explanations for this relationship are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.G. Nelson: inCritical Issues in the Development of High Temperature Structural Materials, N.S. Stoloff, DJ. Duquette, and A.F. Giamei, eds., TMS, Warrendale, PA, 1993, pp. 455–64.

    Google Scholar 

  2. A. San-Martin and F.D. Manchester:Bull. Alloy Phase Diagrams, 1987, vol. 8, pp. 30–42.

    CAS  Google Scholar 

  3. F.H. Froes, D. Eylon, and C. Suryanarayana:JOM, 1990, vol. 42 (3), pp. 26–29.

    CAS  Google Scholar 

  4. G.A. Lenning, G.M. Graighead, and R.I. Jaffee: inHydrogen Damage, C.D. Beachem, ed., ASM, Metals Park, OH, 1977, pp. 100–09.

    Google Scholar 

  5. J.P. Hirth:Metall. Trans. A, 1980, vol. 11A, pp. 861–90.

    CAS  Google Scholar 

  6. H.K. Birnbaum and P. Sofronis:Mater. Sci. Eng., 1994, vol. A176, pp. 191–202.

    Google Scholar 

  7. H. Matsui, H. Kimura, and S. Moriya:Mater. Sci. Eng., 1979, vol. 40 (2), pp. 207–16.

    Article  CAS  Google Scholar 

  8. S. Moriya, H. Matsui, and H. Kimura:Mater. Sci. Eng., 1979, vol. 40 (2), pp. 217–25.

    Article  CAS  Google Scholar 

  9. H. Matsui, H. Kimura, and A. Kimura:Mater. Sci. Eng., 1979, vol. 40 (2), pp. 227–34.

    Article  CAS  Google Scholar 

  10. I.M. Robertson and H.K. Birnbaum:Acta Metall., 1986, vol. 34, pp. 353–66.

    Article  CAS  Google Scholar 

  11. P. Rozenak, I.M. Robertson, and H.K. Birnbaum:Acta Metall, 1990, vol. 38, pp. 2031–40.

    Article  CAS  Google Scholar 

  12. D.S. Shih, I.M. Robertson, and H.K. Birnbaum:Acta Metall, 1988, vol. 36, pp. 111–24.

    Article  CAS  Google Scholar 

  13. I.M. Bernstein:Scripta Metall, 1974, vol. 8, pp. 343–50.

    Article  CAS  Google Scholar 

  14. O.N. Senkov and J.J. Jonas:Metall. Mater. Trans. A, 1996, vol. 27A, pp. 0000–00.

    Google Scholar 

  15. O.N. Senkov: inStrength of Materials, H. Oikawa, K. Maruyama, S. Takeuchi and M. Yamaguchi, eds., The Japan Institute of Metals, Sendai, 1994, pp. 635–38.

    Google Scholar 

  16. A.T. Santhanam and R.E. Reed-Hill:Metall. Trans., 1971, vol. 2, pp. 2619–22.

    Article  CAS  Google Scholar 

  17. A.M. Garde, A.T. Santhanam, and R.E. Reed-Hill:Acta Metall, 1972, vol. 20, pp. 215–20.

    Article  CAS  Google Scholar 

  18. M. Doner and H. Conrad:Metall. Trans., 1973, vol. 4, pp. 2809–17.

    Article  CAS  Google Scholar 

  19. O.N. Senkov and J.J. Jonas:Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1303–12.

    CAS  Google Scholar 

  20. B.J. Brindley and P.J. Worthington:Metall. Rev., 1970, vol. 15, pp. 101–14.

    Google Scholar 

  21. J.D. Baird: inThe Inhomogeneity of Plastic Deformation, ASM, Metals Park, OH, 1973, pp. 191–222.

    Google Scholar 

  22. R.A. Mulford and U.F. Kocks:Acta Metall, 1979, vol. 27, pp. 1125–34.

    Article  CAS  Google Scholar 

  23. P. Rodriguez:Bull. Mater. Sci., 1984, vol. 6 (4), pp. 653–63.

    Google Scholar 

  24. P.G. McCormick:Acta Metall, 1973, vol. 21, pp. 873–77.

    Article  CAS  Google Scholar 

  25. P. Venugopal, S. Venugopal, and V. Seetharaman:J. Mater. Proces. Technol, 1990, vol. 21, pp. 91–100.

    Article  Google Scholar 

  26. B.A. Kolachev, O.P. Nasimov, and L.N. Zhuravlev: inDiffus. Data, 1970, vol. 4, p. 219.

    Google Scholar 

  27. H. Nakajima, M. Koiwa, and S. Ono:Scripta Metall, 1983, vol. 17, pp. 1431–34.

    Article  CAS  Google Scholar 

  28. F.C. Wagner, E.J. Bucur, and M.A. Steinberg:Trans. ASM, 1956, vol. 48, pp. 742–61.

    Google Scholar 

  29. D. David, E.A. Garcia, X. Lucas, and G. Beranger:J. Less-Common Met., 1979, vol. 65, pp. 51–69.

    Article  CAS  Google Scholar 

  30. D. David, G. Beranger, and E.A. Garcia:J. Electrochem. Soc, 1983, vol. 130 (6), pp. 1423–26.

    Article  CAS  Google Scholar 

  31. Yu.V. Levinskiiet al: inDiffus. Data, F.H. Wöhlbier, 1969, vol. 3, p. 295.

  32. A. Anttila, J. Räisänen, and J. Keinonen:Appl. Phys. Lett., 1983, vol. 42, pp. 498–500.

    Article  CAS  Google Scholar 

  33. C. Herzig, R. Willecke, and K. Vieregge:Phil. Mag. A, 1991, vol. 63, pp. 949–58.

    CAS  Google Scholar 

  34. J. Räisänen, A. Anttila, and J. Keinonen:J. Appl. Phys., 1985, vol. 57, pp. 613–14.

    Article  Google Scholar 

  35. H. Nakajima and M. Koiwa:Iron Steel Inst. Jpn. Int., 1991, vol. 31, pp. 757–66.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

O.N. SENKOV, on leave from the Institute of Solid State Physics, Russian Academy of Sciences, Moscow Region 142432, Russia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senkov, O.N., Jonas, J.J. Dynamic strain aging and hydrogen-induced softening in alpha titanium. Metall Mater Trans A 27, 1877–1887 (1996). https://doi.org/10.1007/BF02651937

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651937

Keywords

Navigation