Skip to main content
Log in

The origins of twinning in cdTe

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The use of cadmium telluride is limited by the occurrence of twins in the material. Mechanical deformation experiments and studies of the growth interface suggest that these arise through growth accidents occurring on the liquid-solid inter-face rather than by mechanical deformation of the solidified ingot. The incidence of twinning is found to be higher in Czochralski-grownmaterial than that grown by other techniques and there is a consequent reduction in grain-size due to the formation of incoherent boundaries at twin intersections. From comparisons with other II-VI and III-V compounds it is concluded that the twinning is an intrinsic feature of the CdTe chemical bond structure and can only be totally elimina-ted by changing the ionicity of the material. Nevertheless, the twin density can be reduced by the use of low growth rates and the avoidance of interface perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Wilkes, Proc. Inst. Elect. Engrs.B106, 866 (1959).

    Google Scholar 

  2. K.F. Hulme and J.B. Mullin, Solid-State Electron5, 211 (1962).

    Article  CAS  Google Scholar 

  3. J.B. Mullin, “Compound Semiconductors”, Vol. 1, Eds. R.K. Willardson and H.L. Goering, Rheinhold Publish- ing Co. New York p.365 (1962).

    Google Scholar 

  4. H.C. Gatos, P.L. Moody and M.C. Lavine, J.Appl. Phys.31, 212 (1960).

    Article  CAS  Google Scholar 

  5. A.T. Churchman, G.A. Geach and J. Winton, Proc. Roy. Soc. A238, 194 (1956).

    Article  CAS  Google Scholar 

  6. R.L. Fullman and J.C. Fisher, J.Appl. Phys.22, 1350 (1951).

    Article  CAS  Google Scholar 

  7. M.A. Meyers and L.E. Murr, Acta Metall.26, 951 (1978).

    Article  CAS  Google Scholar 

  8. J. Gastaldi and C. Jourdan, Phys. Stat. Sol. (a)52 139 (1979).

    Article  CAS  Google Scholar 

  9. J.B. Mullin, C.A. Jones, B.W. Straughan and A. Royle, J.Cryst. Growth.59, 135 (1982).

    Article  CAS  Google Scholar 

  10. P.J. Gillbanks, RSRE Technical Memorandum (1981).

  11. E.L. Hall and J.B. Van der Sande, J.Amer. Ceram. Soc.61, 417 (1978).

    Article  CAS  Google Scholar 

  12. S. Cole, to be published in J.Cryst. Growth.

  13. H. Alexander and P. Haasan, Solid State Phys.22, 27, (1969). Eds. F. Seitz and D. Turnbill.

  14. J. Vandeberkhof, “Proc. Int. Symp. on CdTe”, CNRS Strasbourg 1971, Eds. P. Siffert and A. Cornet.

  15. W.G. Burgers, “The Art and Science of Growing Crystals”, Ed. J.J. Gilman, Wiley. New York, 433 (1963).

    Google Scholar 

  16. H. Gottschalk, G. Palzer and H. Alexander, Phys. Stat. Sol. (a)45, 207 (1978).

    Article  CAS  Google Scholar 

  17. E.L. Hall and J.B. Van der Sande, Phil. Mag.A37 137 (1978).

    Google Scholar 

  18. J.C. Phillips, “Bonds and Bands in Semiconductors”, Academic Press, New York, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vere, A.W., Cole, S. & Williams, D.J. The origins of twinning in cdTe. J. Electron. Mater. 12, 551–561 (1983). https://doi.org/10.1007/BF02650863

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02650863

Key words

Navigation